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a b s t r a c t

In many empirical situations, modelling simultaneously three or more outcomes as well as
their dependence structure can be of considerable relevance. Copulae provide a powerful
framework to build multivariate distributions and allow one to view the specification of
themarginal responses’ equations and their dependence as separate but related issues.We
propose a generalization of the trivariate additive probit model where the link functions
can in principle be derived from any parametric distribution and the parameters describing
the residual association between the responses can bemade dependent on several types of
covariate effects (such as linear, nonlinear, random, and spatial effects). All the coefficients
of the model are estimated simultaneously within a penalized likelihood framework that
uses a trust region algorithm with integrated automatic multiple smoothing parameter
selection. The effectiveness of the model is assessed in simulation as well as empirically
by modelling jointly three adverse birth binary outcomes in North Carolina. The approach
can be easily employed via the gjrm() function in the R package GJRM.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

When the researcher is interested in modelling more than one response, univariate regression will not yield valid 2

inferences if there is residual dependence between the outcomes conditional on covariates. The case of trivariate models 3

has been discussed in the literature in various contexts. For example, Loureiro et al. (2010) assessed the effect of parental 4

smoking habits on their children’s smoking habits by estimating a three-equation probit regressionmodel, whereas Zhong et 5

al. (2012) evaluated the safety of a treatment and identified an optimal dose by jointlymodelling the probabilities of toxicity, 6

efficacy, and surrogate efficacy given a specific dose. Król et al. (2016) examined the response to a treatment on patientswith 7

metastatic colorectal cancer by analysing simultaneously three outcomes: a longitudinal marker, a set of recurrent events, 8

and a terminal event. A mixture of powers copula-based approach to model jointly three binary and discrete outcomes was 9

employed by Zimmer and Trivedi (2006), whereas Zhang et al. (2015) developed a Bayesian algorithm to estimate trivariate 10

probit-ordered models affected by double sample selection. 11

This paper contributes to the literature by introducing a generalization of the trivariate additive probitmodel. Specifically, 12

we extend and therefore enhance the model proposed by Filippou et al. (2017) by allowing (i) the link functions to be 13

virtually derived from any parametric distribution and (ii) the model’s association parameters to depend on several types of 14

covariate effects (such as linear, nonlinear, random, and spatial effects). The first extension allows for the use of link functions 15
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other than probit. In particular, the additional link functions implemented for this work are the logit and complementary1

log–log which are used extensively in numerous disciplines, including the medical and social sciences. In clinical research2

logit models are widely employed as they provide direct information about which treatment has the best odds of benefiting3

a patient, for instance. Complementary log–log models have important applications in survival analysis where they can,4

for example, provide a clear insight into the relative reduction of risk for death or progression. Extension (ii) is of some5

relevance since it can help to gain insights into the way the residual association between the responses is modified by the6

presence of covariates. As will be further elaborated in the paper, the practical success of such extensions depends on the7

use of a computationally efficient and theoretically tractable parametrization for the model’s correlation matrix as well as8

the availability of the analytical score and Hessian of the proposed model’s log-likelihood which are not trivial to derive.9

To the best of our knowledge, the two proposed developments have not been considered in the context of trivariate (or10

more generally, multivariate) binary response regression models. Note also that, despite we have focused on the trivariate11

case, the model’s formulation in Section 2 could be easily extended to the multivariate context as would be in principle12

the proposed estimation framework. Finally, it is worth pointing out that our proposal may be regarded as an extension13

of the bivariate regression approaches introduced by Marra and Radice (2017a), Klein and Kneib (2016) and Radice et14

al. (2016) as well as of the popular generalized additive models (GAMs) and GAMs for location, scale and shape of Wood15

(2017) and Rigby and Stasinopoulos (2005). In summary, the two main contributions of this paper are to extend the model16

introduced by Filippou et al. (2017) as detailed above and tomake the new developments available via the gjrm() function17

from the R package GJRM (Marra and Radice, 2017b).18

Section 2 introduces the proposedmodel, Section 3 describes the log-likelihood and Section 4 provides the key details on19

parameter estimation. The proposal is empirically evaluated in a simulation study, presented in Section 5, and then applied20

to a case study in Section 6, where the interest is in modelling jointly three adverse birth binary outcomes in North Carolina.21

Section 7 concludes the paper.22

2. Model specification23

This section introduces an extension of the trivariate probit that is based on copulae, arbitrary parametric link functions,24

additive predictors and a modified Cholesky decomposition of the model’s correlation matrix.25

In general, a multivariate distribution can be constructed using a copula function that joins together marginal distribu-26

tions which may come from different families (Joe, 1997). Suppose that C denotes a joint cumulative distribution function27

(cdf) with support in [0, 1]3 and whose one-dimensional margins are uniform. Let also U−1
m : (0, 1) → R be a quantile28

function, ∀m = 1, 2, 3, Fm(ηmi) : R → [0, 1] a univariate cdf, F
(
U−1
1 {F1(η1i)} ,U−1

2 {F2(η2i)} ,U−1
3 {F3(η3i)}

)
a joint cdf, and29

ηmi an additive predictor (made up of regression coefficients and covariates as described in Section 2.2) for i = 1, . . . , n,30

where n denotes the sample size. Then there exists a three-dimensional copula function C : [0, 1]3 → [0, 1] defined as31

C(F1(η1i), F2(η2i), F3(η3i)) = F
(
U−1
1 {F1(η1i)} ,U−1

2 {F2(η2i)} ,U−1
3 {F3(η3i)}

)
, (1)32

which satisfies: (C.1) C (F1(η1i), 1, 1) = F1(η1i), C (1, F2(η2i), 1) = F2(η2i), C (1, 1, F3(η3i)) = F3(η3i), ∀Fm(ηmi) ∈ [0, 1]33

and m ≤ 3; (C.2) C (F1(η1i), F2(η2i), F3(η3i)) = 0 if Fm(ηmi) = 0 for any m ≤ 3; and (C.3) C is 3-increasing (Sklar,34

1959). Condition (C.1) states that if the realizations of two variables are known each with marginal probability of one,35

then the joint probability of the three outcomes is the same as the probability of the remaining uncertain outcome.36

Condition (C.2) is sometimes referred to as the grounded property of a copula and states that the joint probability of all37

outcomes is zero if the marginal probability of any outcome is zero. Condition (C.3) means that the copula volume of any38

3-dimensional interval is non-negative. A copula C is unique on the cartesian product of the ranges of the marginal cdfs39

Ran(F1(η1i))×Ran(F2(η2i))×Ran(F3(η3i)). The copula is unique if the margins are continuous. Any copula lies always in the40

interval41

max

{
3∑

m=1

Fm(ηmi) − 2, 0

}
≤ C (F1(η1i), F2(η2i), F3(η3i)) ≤ min {F1(η1i), F2(η2i), F3(η3i)} ,42

the so-called Fréchet–Hoeffding bounds. A desirable feature of a copula is that it should cover the sample space between43

the lower and upper bounds, and that as the association parameters approach the lower (upper) bound of their permissible44

ranges, the copula approaches the Fréchet–Hoeffding lower (upper) bound. Knowledge of the Fréchet–Hoeffding bounds is45

therefore important in selecting an appropriate copula. For more details see, for instance, Trivedi and Zimmer (2007) and46

references therein.47

In this paper, we employ the trivariate Gaussian copula with dependence structure characterized by coefficients ϑ12,i,48

ϑ13,i and ϑ23,i forming the model’s correlation matrix Σi. Based on (1), we express the trivariate Gaussian copula as49

Φ3
(
Φ−1 {F1(η1i)} ,Φ−1 {F2(η2i)} ,Φ−1 {F3(η3i)} ; 0,Σi

)
, where Φ−1 is the quantile function of a standard normal, Fm(ηmi)50

is derived in this case from either the standardized normal, logistic or Gumbel univariate cdf which is respectively defined51

as52

Fm(ηmi) = Φ(ηmi), Fm(ηmi) =
exp(ηmi)

1 + exp(ηmi)
and Fm(ηmi) = 1 − exp {− exp(ηmi)} ,53
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