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a b s t r a c t

In the present paper we consider the problem of estimating a three-dimensional func-
tion f based on observations from its noisy Laplace convolution. Our study is motivated
by the analysis of Dynamic Contrast Enhanced (DCE) imaging data. We construct an
adaptive wavelet-Laguerre estimator of f , derive minimax lower bounds for the L2-risk
when f belongs to a three-dimensional Laguerre–Sobolev ball and demonstrate that the
wavelet-Laguerre estimator is adaptive and asymptotically near-optimal in a wide range
of Laguerre–Sobolev spaces. We carry out a limited simulations study and show that
the estimator performs well in a finite sample setting. Finally, we use the technique for
the solution of the Laplace deconvolution problem on the basis of DCE Computerized
Tomography data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Consider an equation

Y (t, x) = q(t, x) + εξ (t, x) with q(t, x) =

∫ t

0
g(t − z)f (z, x)dz. (1.1)

where x = (x1, x2), (t, x1, x2) ∈ U = [0,∞) × [0, 1] × [0, 1] and ξ (z, x1, x2) is the three-dimensional Gaussian white noise
such that

Cov {ξ (z1, x11, x12), ξ (z2, x21, x22)} = I(z1 = z2) I(x11 = x21) I(x12 = x22).

Here and in what follows, I(A) denotes the indicator function of a set A. Formula (1.1) can be viewed as a noisy version of a
functional Laplace convolution equation. Indeed, if x is fixed, then (1.1) reduces to a noisy version of the Laplace convolution
equation

Y (t) = q(t) + εξ (t) with q(t) =

∫ t

0
g(t − z)f (z)dz, (1.2)

that was recently studied by Abramovich et al. (2013), Comte et al. (2017) and Vareschi (2015).
Eq. (1.1) represents a white-noise version of the Laplace convolution equation which corresponds to the observational

version of the equation

Y (ti, x1,j, x2,l) =

∫ ti

0
g(ti − z)f (z, x1,j, x2,l)dz + σξi,j,l, (1.3)
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where i = 1, . . . , n0, j = 1, . . . , n1, l = 1, . . . , n2, ti = iT/n0 are equispaced on the interval [0, T ], x1,j = j/n1 and x2,l = l/n2
and ξi,j,l are standard normal variables that are independent for different i, j and l. If n0, n1 and n2 are large, then Eq. (1.1)
serves as an ‘‘idealized’’ version of Eq. (1.3). This result is rigorously proved in the case of the Gaussian regressionmodel (see,
e.g. Brown and Low (1996)), and it is well known that it holds for a large variety of settings. Abramovich et al. (2013) studied
a one-dimensional (n1 = n2 = 1) version of Eq. (1.3). It follows from the upper and lower bounds in their paper that the
correspondence between Eqs. (1.2) and the one-dimensional version of Eq. (1.3) holds with ε = σT/

√
n where n = n0n1n2

(since n1 = n2 = 1).
Comte et al. (2017) also studied solution of Eq. (1.3) in the case ofn1 = n2 = 1 and rigorously investigated the implications

of the fact that observations are taken on the finite interval [0, T ] rather than on the positive part of the real line. They showed
that the latter leads to a much more involved mathematical arguments. On the other hand, Vareschi (2015) considered
Eq. (1.2) and, building upon an earlier version of Comte et al. (2017), derived the lower and the upper bounds for the error in
thewhite noise version of the Laplace deconvolution problem. Our paper can be regarded as an extension of Vareschi’s (2015)
results to the case when Laplace convolution equation has a spatial component and the function of interest is anisotropic,
i.e., may have different degrees of smoothness in different directions. Therefore, our objective is to show how utilizing the
spatial smoothness of the unknown function f leads to its more precise recovery.

Our study is motivated by the analysis of Dynamic Contrast Enhanced (DCE) imaging data. DCE imaging provides a non-
invasive measure of tumor angiogenesis and has great potential for cancer detection and characterization, as well as for
monitoring, in vivo, the effects of therapeutic treatments (see, e.g., Bisdas et al. (2007), Cao (2011), Cao et al. (2010) and
Cuenod et al. (2011)). The common feature of DCE imaging techniques is that each of them uses the rapid injection of a
single dose of a bolus of a contrast agent and monitors its progression in the vascular network by sequential imaging at
times ti, i = 1, . . . , n. This is accomplished by measuring the pixels’ gray levels that are proportional to the concentration of
the contrast agent in the corresponding voxels. At each time instant ti, one obtains an image of an artery aswell as a collection
Y (ti, x) of measurements for each voxel x. For example, in the case of a CT scan, Y (ti, x) are the Hu units which represent
the opacity of the material to X-rays. The images of the artery allow to estimate the so called Arterial Input Function, AIF(t),
which quantifies the total amount of the contrast agent entering the area of interest. Comte et al. (2017) described the DCE
imaging experiment in great detail and showed that the cumulative distribution function F (z, x) of the sojourn times for the
particles of the contrast agent entering a tissue voxel x satisfies the following equation

Y (t, x) =

∫ t−δ

0
g(t − z)β(x)(1 − F (z, x))dz + εξ (t, x). (1.4)

Here the errors ξ (t, x) are independent for different t and x = (x1, x2), g(t) = AIF(t), a positive coefficient β(x) is related
to a fraction of the contrast agent entering the voxel x and δ is the time delay that can be easily estimated from data. The
function of interest is f (z, x) = β(x)(1 − F (z, x)) where the distribution function F (z, x) characterizes the properties of the
tissue voxel x and can be used as the foundation for medical conclusions.

Since the Arterial Input Function can be estimated by denoising and averaging the observations over all voxels of the
aorta, its estimators incur much lower errors than those of the left hand side of Eq. (1.4). For this reason, in our theoretical
investigations, we shall treat function g in (1.4) as known. In this case, Eq. (1.4) reduces to the form (1.1) that we study
in the present paper. If one is interested in taking the uncertainty about g into account, this can be accomplished using
methodology of Vareschi (2015).

Laplace deconvolution equation (1.2) was first studied in Dey et al. (1998) under the assumption that f has s continuous
derivatives on (0,∞). However, the authors only considered a very specific kernel, g(t) = be−at , and assumed that s is
known, so their estimator was not adaptive. Abramovich et al. (2013) investigated Laplace deconvolution based on discrete
noisy data. They implemented the kernel method with the bandwidth selection carried out by the Lepskii’s method. The
shortcoming of the approach is that it is strongly dependent on the exact knowledge of the kernel g . Recently, Comte et
al. (2017) suggested a method which is based on the expansions of the kernel, the unknown function f and the observed
signals over Laguerre functions basis. This expansion results in an infinite systemof linear equationswith the lower triangular
Toeplitz matrix. The system is then truncated and the number of terms that are kept in the series expansion of the estimator
is controlled via a complexity penalty. One of the advantages of the technique is that it considers a more realistic setting
where Y (t) in Eq. (1.2) is observed at discrete time instants on an interval [0, T ] with T < ∞ rather than at every value of t .
Finally, Vareschi (2015) derived aminimax optimal estimator of f by thresholding the Laguerre coefficients in the expansions
when g is unknown and is measured with noise.

In the present paper, we consider the functional version (1.1) of the Laplace convolution equation (1.2). The study is
motivated by the DCE imaging problem (1.4). Due to the high level of noise on the left hand side of (1.4), a voxel-per-voxel
recovery of individual curves is highly inaccurate. For this reason, the common approach is to cluster the curves for each
voxel and then to average the curves in the clusters (see, e.g., Rozenholc and Reiß (2012)). As the result, one does not
recover individual curves but only their cluster averages. In addition, since it is impossible to assess the clustering errors,
the estimators may be unreliable even when estimation errors are small. On the other hand, the functional approaches,
in particular, the wavelet-based techniques, allow to denoise a multivariate function of interest while still preserving its
significant features.

The objective of this paper is to solve the functional Laplace deconvolution problem (1.1) directly. In the case of the
Fourier deconvolution problem, Benhaddou et al. (2013) demonstrated that the functional deconvolution solution usually
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