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a b s t r a c t

The empirical best linear unbiased prediction (EBLUP) estimator is utilized for efficient
inference in various research areas, especially for small-area estimation. In order to mea-
sure its uncertainty, we generally need to estimate its mean squared prediction error
(MSE). Ideally, an EBLUP-based method should not only provide a second-order unbiased
estimator of MSE of EBLUP but also maintain strict positivity in estimators of both model
variance parameter andMSE of EBLUP. Fortunately, theMSE estimators proposed in Yoshi-
mori and Lahiri (2014) and Hirose and Lahiri (2017) achieve the three desired properties
simultaneously. As far as we know, no other MSE estimator does so.

In this paper, we therefore seek an adequate class of general adjusted maximum-
likelihood methods that simultaneously achieve the three desired properties of MSE esti-
mation. To establish that the investigated class does so, we reveal the relationship between
the general adjusted maximum-likelihood method for the model variance parameter and
the general functional formof the second-order unbiasedMSE estimator,maintaining strict
positivity. We also compare the performance of several MSE estimators in our investigated
class and others through a Monte Carlo simulation study. The results show that the MSE
estimators in our investigated class perform better than those in others.

© 2018 Published by Elsevier B.V.

1. Introduction 1

In recent decades, there has been high demand for reliable statistics on smaller geographic areas and sub-populations 2

where large samples are not available. Considering the limited number of observations, a direct design-based estimator 3

(direct estimator) is not reliable for such ‘‘small areas’’—as they are called. Even in such a situation, an explicit model-based 4

approach can achievemore accurate estimates by borrowing strength from related areas. Accordingly, a methodology based 5

on this approach has been developed for small-area estimation. For a comprehensive overview of small-area estimation, 6

refer to Rao and Molina (2015). 7

The Fay–Herriot model (Fay and Herriot, 1979), in particular, is widely used as an aggregated level model for small-area 8

inference as follows: 9

For i = 1, . . . ,m,

Level 1 :yi|θi
ind
∼ N(θi,Di);

Level 2 :θi
ind
∼ N(x′

iβ, A). (1)
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The level-1model takes into account the sampling distribution of the direct estimator yi for the ith small area. The true small-1

area mean for the ith area, denoted by θi, is linked to the area-specific auxiliary variables xi = (xi1, . . . , xip)′ in the level-22

model. In practice, the coefficient vector β in Rp and the model variance parameter A in this linking model are unknown.3

The assumption of the known Di often follows from the asymptotic variances of the transformed direct estimates (Efron and4

Morris, 1975) or from empirical variance modeling (Fay and Herriot, 1979). This model can be rewritten as a specific linear5

mixed model:6

yi = θi + ei = x′

iβ + ui + ei, i = 1, . . . ,m,7

where ui and ei are mutually independent with the normality assumption ui
iid
∼ N(0, A) and ei

ind
∼ N(0,Di). It is well known8

that, among all linear unbiased predictors θ̂i of θi, the best linear unbiased predictor (BLUP) yields the minimum mean9

squared prediction error (MSE), which is defined as E[(θ̂i − θi)2], where the expectation is defined with respect to the joint10

distribution of y = (y1 . . . , ym)′ and θ = (θ1 . . . , θm)′ under the Fay–Herriot model (1). We give the form of BLUP as follows:11

θ̂B
i = (1 − Bi)yi + Bix′

iβ̃,12

where Bi =
Di

A+Di
is called the shrinkage factor, which can shrink toward x′

iβ̃ from the direct estimator yi with β̃ = β̃(A) =13

(X ′V−1X)−1X ′V−1y, X = (x1, . . . , xm)′ and V = diag{A + D1, . . . , A + Dm}.14

Since A is unknown in practice, the following empirical best linear unbiased predictor (EBLUP) of θi is generally used for15

small-area inference (A is replaced with its consistent estimator, Â, in θ̂B
i ):16

θ̂EB
i = (1 − B̂i)yi + B̂ix′

iβ̂,17

where B̂i =
Di

Â+Di
and β̂ = β̃(Â). Hereafter, the consistent estimator Â also denotes an even-translation-invariant estimator18

for all β and y that achieve unbiasedness in the EBLUP, as in Kackar and Harville (1981). Such conditions are satisfied by19

several estimators of the model variance parameter A, which are obtained by methods of moments estimators (Fay and20

Herriot, 1979; Prasad and Rao, 1990) and standard maximum likelihood methods such as the profile maximum likelihood21

method (PML) and the residual maximum likelihood method (REML). In particular, the REML estimator of A is preferred in22

terms of its higher-order asymptotic accuracy for largem. Let ÂRE denote the REML estimator of A, obtained as23

ÂRE = argmax
0≤A<∞

LRE(A|y),24

where the residual likelihood function is25

LRE(A|y) = |X ′V−1X |
−1/2

|V |
−1/2 exp{−y′Py/2}26

and P = V−1
− V−1X(X ′V−1X)−1X ′V−1.27

As mentioned above, an EBLUP is widely used as an efficient estimator based on a specific linear mixed model. It would28

also be quite important to measure the MSE of EBLUP as its uncertainty. For small-area inference, its MSE needs to be29

estimated with high accuracy since it generally depends on an unknown parameter even if the true MSE can be derived30

in a closed form. Given a consistent estimator of an unknown model variance parameter, the MSE of EBLUP is always larger31

than that of the best linear unbiased prediction (BLUP) estimator under certain conditions (Kackar and Harville, 1984). In32

most small-area applications, sufficient accuracy cannot be achieved by ignoring this difference, which is of the order of33

O(m−1) for large m (the number of areas). Moreover, the naive MSE estimator, a consistent estimator substituted for the34

model variance parameter A in the MSE of BLUP, lacks second-order unbiasedness for sufficient asymptotic accuracy in35

small-area estimation with large m. Therefore, several second-order unbiased MSE estimators, with some bias correction,36

are suggested in place of the naive estimator. A pioneer work by Prasad and Rao (1990) proposed such a second-order37

unbiased MSE estimator based on Taylor linearization, which used a method of moment estimator of the model variance38

parameter A. Subsequently, MSE estimators have been developed adopting other estimators of unknown model parameter39

via the Taylor linearizationmethod. Datta and Lahiri (2000) andDas et al. (2004) proposedMSE estimators of EBLUP using the40

standard likelihood method to estimate the model variance estimator A. Datta et al. (2005) also suggested an MSE estimator41

using another method for the moment estimator of A, proposed in Fay and Herriot (1979). MSE estimators of EBLUP have42

been constructed through not only the Taylor linearization method but also resampling methods—a bootstrap and jackknife43

method. The bootstrap MSE estimator was first introduced in a small-area context by Butar and Lahiri (2003) and extended44

byHall andMaiti (2006). Another resamplingmethod, the Jackknife-typeMSE estimator, was developed by Jiang et al. (2002,45

2016) and Chen and Lahiri (2008).46

However, the estimation methods for A mentioned above could cause zero estimates although such estimates are47

unreasonable in the context of small-area estimation. Such estimates of A could cause additional estimation problems: an48

over-shrinking problem in estimating the shrinkage factor Bi and occurrence of unreasonable MSE estimates as if the MSE49

of EBLUP is only caused by variabilities of the estimators of β and A. Incidentally, Bell (1999) has reported zero estimates of50

PML and REML for four consecutive years for the Fay and Train (1997) model of 5- to 17-year-old poverty state rates in U.S.51

To avoid such zero estimates, Li and Lahiri (2010) proposed a specific adjusted maximum likelihood method based on the52

frequentist approach. Lahiri and Li (2009) put forward the concept of generalizedmaximum likelihood of unknown variance53



Download English Version:

https://daneshyari.com/en/article/11020322

Download Persian Version:

https://daneshyari.com/article/11020322

Daneshyari.com

https://daneshyari.com/en/article/11020322
https://daneshyari.com/article/11020322
https://daneshyari.com

