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a b s t r a c t

We consider a graphical model where a multivariate normal vector is associated with each
node of the underlying graph and estimate the graphical structure. We minimize a loss
function obtained by regressing the vector at each node on those at the remaining ones
under a group penalty. We show that the proposed estimator can be computed by a fast
convex optimization algorithm. We show that as the sample size increases, the estimated
regression coefficients and the correct graphical structure are correctly estimated with
probability tending to one. By extensive simulations, we show the superiority of the pro-
posed method over comparable procedures. We apply the technique on two real datasets.
The first one is to identify gene and protein networks showing up in cancer cell lines, and
the second one is to reveal the connections among different industries in the US.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Finding structural relations in a network of random variables (Xi : i ∈ V ) is a problem of significant interest in modern
statistics. The intrinsic dependence between variables in a network is appropriately described by a graphical model, where
two nodes i, j ∈ V are connected by an edge if and only if the two corresponding variables Xi and Xj are conditionally
dependent given all other variables. If the joint distribution of all variables is multivariate normal with precision matrix
Ω = ((ωij)), the conditional independence between the variable located at node i and that located at node j is equivalent
of having zero at the (i, j)th entry of Ω . In a relatively large network of variables, generally conditional independence is
abundant, meaning that in the corresponding graph edges are sparsely present. Thus in a Gaussian graphical model, the
structural relation can be learned from a sparse estimate of Ω , which can be naturally obtained by a regularization method
with a lasso-type penalty. Friedman et al. (2008) and Banerjee et al. (2008) proposed the graphical lasso (glasso) estimator
by minimizing the sum of the negative log-likelihood and the ℓ1-norm of Ω , and its convergence property was studied by
Rothman et al. (2008). A closely related method was proposed by Yuan and Lin (2007). An alternative to the graphical lasso
is an approach based on regression of each variable on others, since ωij is zero if and only if the regression coefficient βij
of Xj in regressing Xi on other variables is zero. Equivalently this can be described as using a pseudo-likelihood obtained
by multiplying one-dimensional conditional densities of Xi given (Xj, j ̸= i) for all i ∈ V instead of using the actual
likelihood obtained from joint normality of (Xi, i ∈ V ). The approach is better scalablewith dimension since the optimization
problem is split into several optimization problems in lower dimensions. The approach was pioneered by Meinshausen and
Bühlmann (2006), who imposed a lasso-type penalty on each regression problem to obtain sparse estimates of the regression
coefficients, and showed that the correct edges are selected with probability tending to one. However, a major drawback of
their approach is that the estimator of βij and that of βji may not be simultaneously zero (or non-zero), and hence may lead
to logical inconsistency while selecting edges based on the estimated values. Peng et al. (2009) proposed the Sparse PArtial
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Correlation Estimation (space) by taking symmetry of the precision matrix into account. The method is shown to lead to
convergence and correct edge selectionwith high probability, but itmay be computationally challenging. Aweighted version
of spacewas considered by Khare et al. (2015), who showed that a specific choice of weights guarantees convergence of the
iterative algorithm due to the convexity of the objective function in its arguments. Khare et al. (2015) named their estimator
the CONvex CORrelation selection methoD (concord), and proved that the estimator inherits the theoretical convergence
properties of space. By extensive simulation and numerical illustrations, they showed that concord has good accuracy for
reasonable sample sizes and can be computed very efficiently.

However, in many situations, such as if multiple characteristics are measured, the variables Xi at different nodes i ∈ V
may be multivariate. The methods described above apply only in the context when all variables are univariate. Even if the
above methods are applied by treating each component of these variables as separate one-dimensional variables, ignoring
their group structure may be undesirable, since all component variables refer to the same subject. For example, we may
be interested in the connections among different industries in the US, and may like to see if the GDP of one industry has
some effect on that of other industries. The data is available for 8 regions, and we want to take regions into consideration,
since significant difference in relations may exist because of regional characteristics, which is not possible to capture using
only national data. It seems that the only paper which addresses multi-dimensional variables in a graphical model context
is Kolar et al. (2014), who pursued a likelihood based approach.

In this article, we propose a method based on a pseudo-likelihood obtained from multivariate regression on other
variables. We formulate amultivariate analog of concord, to be called mconcord, because of the computational advantages
of concord in univariate situations. Our regression based approach appears to be more scalable than the likelihood based
approach of Kolar et al. (2014). Moreover, we provide theoretical justification by studying large sample convergence
properties of our proposed method, while such properties have not been established for the procedure introduced by Kolar
et al. (2014).

The paper is organized as follows. Section 2 introduces the mconcordmethod and describes its computational algorithm.
Asymptotic properties ofmconcord are presented in Section 3. Section 4 illustrates the performance ofmconcord, compared
with other methods mentioned above. In Section 5, the proposed method is applied to two real datasets on gene/protein
profiles and GDP respectively. Proofs are presented in Section 6 and in the Appendix.

2. Method description

2.1. Model and estimation procedure

Consider a graph with p nodes, where at the ith node there is an associated Ki-dimensional random variable Yi =

(Yi1, . . . , YiKi )
T , i = 1, . . . , p. Let Y = (Y T

1 , . . . , Y T
p )

T . Assume that Y has multivariate normal distribution with zero mean
and covariance matrix Σ = ((σijkl)), where σijkl = cov(Yik, Yjl), k = 1, . . . , Ki, l = 1, . . . , Kj, i, j = 1, . . . , p. Let the precision
matrix Σ−1 be denoted by Ω = ((ωijkl)), which can also be written as a block-matrix ((Ωij)). The primary interest is in the
graph which describes the conditional dependence (or independence) between Yi and Yj given the remaining variables. We
are typically interested in the situation where p is relatively large and the graph is sparse, that is, most pairs Yi and Yj, i ̸= j,
i, j = 1, . . . , p, are conditionally independent given all other variables. When Yi and Yj are conditionally independent given
other variables, there will be no edge connecting i and j in the underlying graph; otherwise there will be an edge. Under
the assumed multivariate normality of Y , it follows that there is an edge between i and j if and only if Ωij is a non-zero
matrix. Therefore the problem of identifying the underlying graphical structure reduces to estimating the matrix Ω under
the sparsity constraint that most off-diagonal blocks Ωij in the grand precision matrix Ω are zero.

Suppose that we observe n independent and identically distributed (i.i.d.) samples from the graphical model, which are
collectively denoted by Y , while Yi stands for the sample of n many Ki-variate observations at node i and Yik stands for the
vector of observations of the kth component at node i, k = 1, . . . , Ki, i = 1, . . . , p. Following the estimation strategies used
in univariate Gaussian graphical models, we may propose a sparse estimator for Ω by minimizing a loss function obtained
from the conditional densities of Yi given Yj, j ̸= i, for each i and a penalty term. However, since sparsity refers to off-
diagonal blocks rather than individual elements, the lasso-type penalty used in univariate methods like space or concord
should be replaced by a group-lasso type penalty, involving the sum of the Frobenius-norms of each off-diagonal block Ωij.
A multivariate analog of the loss used in a weighted version of space is given by
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where σ ik
= ωiikk, w = (w11, . . . , wpKp ) are nonnegative weights and ωijkl = ωjilk due to the symmetry of precision matrix.

Writing the quadratic term in the above expression as
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