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A B S T R A C T

Traffic-related nitrogen dioxide (NO2) has been traditionally estimated using surfaces generated
through land-use regression (LUR). Recently, air pollution dispersion has been used to derive NO2

exposures in urban areas. There is evidence that data collection protocols and modelling as-
sumptions can have a large effect on the resulting NO2 spatial distribution. This study in-
vestigates the effects of various NO2 surfaces on the risk estimates of postmenopausal breast
cancer (BC) and prostate cancer (PC), both of which have already been associated with traffic-
related air pollution. We derived exposures for individuals in two case control studies in
Montreal, Canada using four different surfaces for NO2. Two of the surfaces were developed using
LUR but employed different data collection protocols (LUR-1 and LUR-2), and the other two
surfaces were generated using dispersion modelling; one with a regional model (dispersion-1)
and another with a street canyon model (dispersion-2). Also, we estimated separate odds ratios
(ORs) using concentrations of NO2 as measures of exposure for both cancers. While the range of
NO2 concentrations from dispersion (4–26 ppb) was lower than the range from LUR (4–36 ppb),
the four surfaces were found to be moderately correlated, with Spearman correlation coefficients
ranging from 0.76 to 0.88. The ORs for BC were estimated to be 1.26, 1.10, 1.07, and 1.05 based
on LUR-1, LUR-2, dispersion-1, and dispersion-2. In contrast, the ORs for PC were estimated to be
1.39, 1.30, 1.13, and 1.04 based on LUR-1, LUR-2, dispersion-1, and dispersion-2. The four ex-
posure measures indicated positive associations but we observed higher mean ORs based on the
LUR surfaces albeit with overlapping CIs. Since LUR models capture all sources of NO2 and
dispersion models only capture traffic emissions, it is possible that this difference is due to the
fact that non-road sources also contribute to the spatial distribution in NO2 concentrations.

1. Introduction

In urban areas, emissions from traffic constitute the main air pollution source. A wide range of studies have linked exposure to
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traffic-related air pollution with increased incidence of asthma (Carlsten et al. 2010; Gehring et al. 2010; Snowden et al. 2014),
ischemic heart disease (Gan et al. 2011; Nyhan et al. 2014; Weichenthal et al. 2011), neurodegenerative diseases (Levesque et al.
2011; Wang et al. 2009), and various forms of cancer such as breast cancer (Crouse et al. 2010), prostate cancer (Parent et al. 2013),
and lung cancer (Hamra et al. 2015). In particular, exposure to nitrogen dioxide (NO2), an accepted marker of traffic-related air
pollution, has been associated with various health outcomes. For example, Chen et al. (2013) showed that a 5 ppb increase in NO2

exposure was associated with a 12% increase in the risk of mortality from cardiovascular disease. In a lung cancer study, Hamra et al.
(2015) estimated that a 10 μg/m3 increase in exposure to NO2 was associated with a 4% increase in the risk of lung cancer. In another
study of chronic obstructive pulmonary disease (COPD) conducted among 52,799 participants, the authors estimated that an increase
in the 35-year mean NO2 level by 5.8 μg/m3 was associated with an increased risk of COPD by 8% (Andersen et al., 2011).

Traditionally, NO2 exposure surfaces have been developed using land-use regression (LUR) models, whereby integrated NO2

measurements were conducted with passive samplers. Then, exposures were modelled at the home location of study participants
(Abernethy et al. 2013; Beelen et al. 2013; Dons et al. 2014; Hoek et al. 2008; Lee et al. 2014; Shekarrizfard et al. 2015). With
advances in air pollution instrumentation and improved knowledge of travel and activity patterns of individuals in urban areas, new
methods of deriving exposure have become possible. For example, the development of NO2 sensors has enabled the implementation
of short-term monitoring campaigns (Austin et al. 2006; Deville Cavellin et al. 2016; Setton et al. 2011) and personal measurements
(Mcadam et al., 2011; Pattinson et al. 2014) while improvements in travel demand forecasting and traffic modelling motivated the
development of traffic emission and dispersion models, capable of capturing the spatio-temporal variability in air pollution within
urban areas (Beckx et al. 2009; Hatzopoulou and Miller 2010; Shekarrizfard et al. 2017). LUR modelling necessitates the deployment
of large air quality sampling campaigns with extensive spatial and temporal coverage (Beelen et al. 2013; Lee et al. 2014; Levy et al.
2010).

As an alternative to statistical techniques, dispersion modelling involves constructing a dynamic model of the dispersion processes
occurring at the intra-urban scale. In this context, dispersion models capable of simulating air quality at the level of individual roads
are grouped into 3 main categories: 1) Gaussian dispersion models, which are typically used for areas without obstacles or with
obstacles of simple geometry; these models can be accurate at the top of the urban canopy and are mainly Gaussian plume and
Gaussian puff models (Cimorelli et al. 2005; Scire et al. 2000); 2) Street-canyon models, which are appropriate for cities with tall
buildings; they simulate pollutant transfer along the street and at intersections (Hertel and Berkowicz 1989; Soulhac et al. 2011); and
3) Computational Fluid Dynamics (CFD) models; they provide detailed representations of the atmospheric flow and some also treat
the physics and chemistry of air pollutant transformations; they are however limited to local applications such as the impact of a
single pollution source in complex street geometry and flow characteristics (Eichhorn and Kniffka 2010; Milliez and Carissimo 2007).
Dispersion modelling of road traffic sources has been conducted for a variety of road and network configurations (Batterman et al.
2010; Hatzopoulou and Miller 2010; Lee et al. 2009; Ning et al. 2005; Sangkapichai et al. 2010). Output from dispersion models has
been used in previous epidemiologic studies (Bellander et al. 2001; Gauderman et al., (2005); Henderson. et al., 2011; Nafstad et al.
2003; Raaschou-Nielsen et al. 2010). For example, in a 27-year follow-up study, Nafstad et al. (2003) estimated NO2 concentrations
using sets of dispersion field coefficients given from model calculations for each year. The authors estimated 8% increase in the risk of
lung cancer (95% CI: 1.02–1.15) for a 10 μg/m3 increase in NO2 at the home address. Gauderman et al., (2005) used the CALINE4
dispersion model to estimate traffic-related NOx and estimated that with an increase in NO2 concentrations by 5.7 ppb, the odds ratio
(OR) for childhood asthma was 1.83 (95% CI: 1.04–3.21). Raaschou-Nielsen et al. (2010) used the OSPM dispersion model to
estimate traffic related NOx concentrations and estimated that the incidence rate ratios for lung cancer were 1.30 (95% CI: 1.07–1.57)
and 1.45 (95% CI, 1.12–1.88) for NOx concentrations of 30–72 μg/m3 and greater than 72 μg/m3, respectively. Furthermore, in a
case-control study of stillbirths, Ihrig et al. (1998) estimated arsenic exposure levels from airborne emissions using a dust dispersion
model in Texas and the OR observed for Hispanics in the high exposure group (> 100 µg/m3 arsenic) was 8.4. Henderson. et al.,
(2011) estimated smoke-related PM10 from the CALPUFF dispersion model and estimated the ORs for a 30 μg/m3 increase in tapered
element oscillating microbalance (TEOM)-based PM10 to be equal to 1.05 (95% CI: 1.03–1.06) for all respiratory physician visits, 1.16
(95% CI: 1.09–1.23) for asthma-specific visits, and 1.15 (95% CI: 1.00–1.29) for respiratory hospital admissions. Finally, Bellander
et al. (2001) estimated NO2 concentrations using the AIRVIRO dispersion model for all years spanning between 1955 and 1990 for the
entire Stockholm area and assigned the NO2 exposures to 10,800 geocoded addresses. They concluded that while this technique has
practical applications for epidemiological studies, it might be limited to study sites that possessed historical traffic and other emission
data.

The main strength of LUR is the use of monitoring data and the relative ease of model development. Dispersion models have the
advantage of incorporating both spatial and temporal variation of air pollution within a study area and can be applied at different
spatial scales. Some of the limitations of these models include the assumptions about dispersion patterns (e.g., Gaussian dispersion),
the need for validation against monitoring stations, and relatively costly meteorological and emission data inputs (Jerrett et al. 2005).
A number of studies have compared the performance of LUR and dispersion modelling (Bell 2006; Briggs et al. 2000; Briggs et al.
1997; Cyrys et al. 2005; Dijkema et al. 2011; Hennig et al. 2016; Jerrett et al. 2005; Marshall et al. 2008; Wu et al. 2011). These
studies suggest that LUR models can explain the small-scale variations in air pollution concentrations as well or even better than most
dispersion models. Results, however, depend on the characteristics of the study area, the density of the monitoring, and the resolution
of the predictor variables. Beelen et al. (2010) compared the performance of high-resolution LUR and dispersion models in estimating
small-scale variations in NO2 concentrations and observed a moderate agreement between the estimated concentrations based on the
two methods. The dispersion model performed better than the LUR model with a correlation of 0.77 versus 0.47 against data from
fixed stations. Marshall et al. (2008) used three approaches for estimating within-urban spatio-temporal variability in ambient
concentrations: (a) spatial interpolation of monitoring data (nearest and inverse distance weighted (IDW)), (b) LUR, and (c) a
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