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a b s t r a c t

This paper generalizes known gradient restrictions for the core of a voting rule parameterized by an
arbitrary quota. For the special case of majority rule with an even number of voters, the result implies
that given any pointed, finitely generated, convex cone C , the difference between the number of voters
with gradients in C and the number with gradients in −C cannot exceed the number of voters with
zero gradient, plus a dimensional adjustment. When the cone has dimensionality less than three, the
adjustment is zero. A difficulty in the proof of a result of Schofield (1983), which neglects the dimensional
adjustment term, is identified, and a counterexample (in three dimensions) presented.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the spatial theory of voting, a collection of voters must
choose an alternative from a subset of Euclidean space. Assuming
voting is governed by a quota rule, whereby one alternative defeats
another in a pairwise vote whenever the number of supporters
meets the quota, the set of alternatives that are stable with respect
to pairwise voting is the core of the voting rule. Under standard
differentiability conditions, it has been known since Plott (1967)
that the conditions defining themajority core for an odd number of
voters imply restrictions on voter gradients, and that when the set
of alternatives is multidimensional, these restrictions are severe.
Specifically, at anymajority core alternative, there must be at least
one voter whose gradient equals zero; and if there are no other
such voters, then the gradients of the remaining votersmust satisfy
radial symmetry: they can be paired in such away that the voters in
each pair have gradients that point in exactly opposite directions.
For majority voting with an even number of voters, or for general
quota rules, our knowledge of the gradient restrictions that must
hold at the core is incomplete. This paper provides a necessary
gradient condition for the core of a quota rule that generalizes
known results in the literature, and it identifies a difficultywith the
proof of – and presents a counterexample to – a result by Schofield
(1983) for the majority core with an even number of voters.

The main result of this paper states that at any core alternative,
for every well-behaved cone C ,1 the following must be less than
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1 That is, for every pointed, finitely generated, convex cone.

the quota: (i) the number of voters whose gradients belong to C ,
plus (ii) half of the number of voters whose gradients do not lie
on the linear subspace spanned by C , plus (iii) |I|

s . Here, s is the
dimensionality of the cone, and I is the coalition of voters with
gradients in the subspace spanned by the cone, less the voters
whose gradients belong to C or−C . This last term is a ‘‘dimensional
adjustment’’, which derives from the difficulty in securing votes
from the members of I , while at the same time garnering the
support of voters with gradients in C . The result has numerous
implications, including results of Matthews (1980), Banks (1995),
and Saari (1997).2 Saari’s (1997) Lemma 2, for example, establishes
that if an alternative x belongs to the core of the voting rule with
quota q, and if n denotes the number of voters and k the number of
voterswith zero gradient at x, then for each coalitionGwith at least
2q−n+k−1memberswith non-zero gradients, the linear subspace
spanned by the gradients of voters in Gmust contain a collection of
voter gradients that is semi-positively dependent, i.e., there must
be a coalition G′ with gradients in this subspace such that the zero
vector is a convex combination of gradients of the voters in G′.
Such a restriction is ‘‘linear’’, because it yields existence of a voter
i whose gradient is a linear combination of the gradients of the
members of G.

2 Assuming a weighted majority rule, McKelvey et al. (1980) provide a gradient
restriction for a core alternative such that the set of voters forwhom this alternative
is ideal has measure zero; in a model with a finite number of voters, this means
that no voter’s ideal point is located at the core. McKelvey and Schofield (1987)
derive gradient restrictions for voting rules generated from a collection of decisive
coalitions. For the special case of a quota rule, the ‘‘pivotal gradient condition’’ of
the latter authors reduces to the necessary condition provided byMatthews’ (1980)
Theorem 1.
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A stronger type of restriction would be ‘‘conic’’, in the sense
that it identifies a voter i whose gradient belongs to −C , where
C is the cone generated by the gradients of members of G. The
extant literature does not contain conic gradient restrictions for
quota rules, but a corollary of the main result presented here is
that if the dimensionality of a well-behaved cone C is s ≥ 2 and
the size of G exceeds sq−n+k−s

s−1 , then there is a voter whose gradient
belongs to −C . Interestingly, Schofield’s (1983) Lemma 1 states
a conic restriction for the majority core: given any well-behaved
coneC , the difference between thenumber of voterswith gradients
in C and the number with gradients in −C cannot exceed the
number of voters with zero gradient. However, as demonstrated
in a counterexample, this result fails due to the absence of the
dimensional adjustment mentioned above. Another corollary of
our main result is that if the cone C has dimension equal to one
or two, then Schofield’s inequality does indeed hold. A further
implication is that at a majority core alternative x, for every pair of
voters whose gradients do not point in opposite directions, there
must be another voter such that the three voters’ gradients are
semi-positively dependent. This pairwise conic restriction is used
by Chung and Duggan (2018) in the analysis of their concept of
directional equilibrium for an even number of voters: Theorem 1
of that paper shows that at a majority core alternative x such that
one voter has gradient equal to zero (so radial symmetry need not
hold), the norm of the sum of normalized gradients at x is less than
or equal one.

Section 2 presents the model of spatial voting, and Section 3
provides a detailed review of gradient restrictions in the literature.
Section 4 presents the main result and illustrates how previous
results are obtained as special cases. Section 5 derives several
new results as implications of the main result. Section 6 presents
the counterexample to the conic restriction of Schofield (1983).
Section 7 ends with a discussion of the role of differentiability in
the results.

2. Spatial voting model

Let N = {1, . . . , n} be a set of voters, and let X ⊆ Rd be a non-
empty set of alternatives, modeled as a subset of d-dimensional
Euclidean space. Assume that the preferences of voter i are repre-
sented by a continuously differentiable utility function ui : X → R.
For use in examples, say the utility function of voter i is Euclidean
if she prefers alternatives that are closer to her ideal alternative,
i.e., there is an ideal point x̂i ∈ X such that for all x, y ∈ X , we
have ui(x) > ui(y) if and only if ∥x − x̂i∥ < ∥y − x̂i∥. In this
case, we can assume quadratic utility, i.e., ui(x) = −∥x − x̂i∥2,
without loss of generality. The necessary conditions derived in
the paper only consider marginal changes in any direction from a
given alternative, and as a consequence, global assumptions such
as quasi-concavity of utilities are not used.

For simplicity, we write pix for the normalized gradient of voter
i’s utility function evaluated at x, formally defined as follows: if
∇ui(x) ̸= 0, then we set

pix =
1

∥∇ui(x)∥
∇ui(x),

and if ∇ui(x) = 0, then we set pix = 0. Given any quota q satisfying
n
2 < q ≤ n, the q-voting rule is the binary relation ≻q on X defined
as follows: for all x, y ∈ X , x≻qy if and only if |{i ∈ N : ui(x) >
ui(y)}| ≥ q. Then the q-core is the set of maximal elements of ≻q,
i.e., it is

C(q) = {x ∈ X : there does not exist y ∈ X such that y≻qx}.

Setting qm = ⌈
n+1
2 ⌉, we obtainmajority rule as a special case,3 and

we refer to the qm-core simply as themajority core. If q > qm, then
we refer to ≻q as a supermajority rule.

3 The operation ⌈·⌉ denotes integer ceiling.

Fig. 1. Majority core, n = 4.

It is well-known that themaximality condition in the definition
of the majority core implies restrictions on the gradients of voters
at a core alternative, and that in a multidimensional space of
alternatives, these restrictions can be quite strong. Plott (1967)
shows that for majority rule with n odd, if x ∈ intX belongs to
the majority core, then there must be at least one voter iwith zero
gradient at x, i.e., pix = 0; moreover, if there are no other voters
with zero gradient at x, then the gradients of the remaining voters
must satisfy radial symmetry, in the sense that for every direction
t ,4 the number of voters with gradients pointing in the t direction
must equal the numberwith gradients pointing in the−t direction,
i.e.,

|{i ∈ N : pix = t}| = |{i ∈ N : pix = −t}|. (1)

In the literature, these necessary conditions for majority rule with
an odd number of voters are known as the Plott conditions.

For other voting rules, including majority rule with n even,
gradient restrictions are not as sharp; in particular, there may or
may not be voters with zero gradient at a core alternative, and the
restrictions on others’ gradients will depend on that contingency.
Following Saari (1997), we define the bliss q-core to consist of every
q-core alternative x such that for some voter i, we have pix = 0; and
we define the non-bliss q-core to consist of every q-core alternative
such that for all voters i, we have pix ̸= 0. Assuming n is even, it is
known that if x ∈ intX is a non-blissmajority core alternative, then
the radial symmetry condition in (1) must hold at x. If x ∈ intX
is a bliss majority core alternative, then there must of course be
some voter i with pix = 0, but radial symmetry need not hold; see
Fig. 1, which depicts four voters with Euclidean preferences and
two arrangements of ideal points, one in which x belongs to the
non-bliss majority core, and one in which x belongs to the bliss
majority core.

3. Review of gradient restrictions at the core

Beyond majority rule, the literature on the theory of voting
has provided a number of gradient restrictions for supermajority
voting rules. Smale (1973) proves that if an alternative x ∈ intX is
Pareto optimal for a coalition G of voters, then we must have 0 ∈

conv{pix : i ∈ G}; indeed, if this did not hold, then the separating
hyperplane theorem could be applied to deduce a direction t such
that pix · t > 0 for all i ∈ G, but then we could define y = x+ϵt ∈ X
for ϵ > 0 sufficiently small that ui(y) > ui(x) for all i ∈ G,
contradicting the assumption that x is Pareto optimal for G. For a
general quota rule, Banks (1995) uses this result to argue that if
x belongs to the q-core, then for every coalition G of voters with
|G| ≥ q, we have 0 ∈ conv{pix : i ∈ G}, and he then establishes
generic emptiness of the q-core when the dimensionality d of the
set of alternatives is sufficiently large.

4 The term direction refers to any vector in ℜ
d with norm one.
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