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a b s t r a c t

We develop improved statistical procedures for testing stochastic monotonicity. While
existing tests use a fixed critical value to set the limiting rejection rate equal to nominal
size at the least favorable case, we use a bootstrap procedure to raise the limiting rejection
rate to nominal size over much of the null. This improves power against relevant local
alternatives. To show the validity of our approach we draw on recent results on the
directional differentiability of the least concave majorant operator, and on bootstrap
inference when smoothness conditions sufficient to apply the functional delta method for
the bootstrap are not satisfied.
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1. Introduction

In stochastic modeling, a variety of orderings can be used to compare the ‘magnitude’ of random variables, such as
stochastic dominance, mean residual life ordering, likelihood ratio ordering, positive dependence ordering, and so on. In this
paper, we focus on stochastic monotonicity, an ordering of random variables based on the first order stochastic dominance of
conditional distributions: for two random variables X and Y , with FY |X (·|x) denoting the cumulative distribution function of
Y conditional on X = x, we say Y is stochastically increasing in X (or equivalently, Y is positive regression dependent on X) if
and only if FY |X (y|x) is a nonincreasing function of x for all y. In what follows, we denote by X and Y the supports of X and Y
respectively, and consider the conditional distribution FY |X on Y×X . This paper studies statistical methods to test stochastic
monotonicity with the null hypothesis of Y being stochastically increasing in X .

As a natural way to examine the monotonic relationship of random variables, stochastic monotonicity can be of interest
in many applications. Suppose for example, we examine empirically whether a son’s social status is determined by that of
his parents. This is a question about intergenerational mobility, one of the classic subjects in sociology and labor economics
(Becker and Tomes, 1979, 1986; Mulligan, 1999; Han and Mulligan, 2001; Restuccia and Urrutia, 2004). The conventional
approach to the problem has been to investigate the dependence between son’s and parents’ status measured by wage, for
instance, and verify that their incomes have positive correlation or positive quadrant dependence. Stochastic monotonicity,
implying both positive correlation and positive quadrant dependence, can provide more information on this aspect of
intergenerational mobility because it also identifies nonlinear or nonmonotone aspects of the relationship between son’s
income and parent’s income that would be undetectable with a test of positive correlation or positive quadrant dependence.
For instance, if a larger portion of the children of very wealthy parents has a high probability of earning very low income
than the children of moderately wealthy parents, perhaps due to perverse incentives arising from the anticipation of
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inheritance, then this would violate stochastic monotonicity but can be consistent with positive correlation or positive
quadrant dependence.1

In testing stochastic monotonicity, the existing statistical methods rely on procedures that use the critical values to
control the limiting rejection rates at the least favorable case (hereafter lfc), i.e., a point in the null at which the asymptotic
distribution of the test statistic is largest in the sense of stochastic dominance. Lee et al. (2009)were the first to propose a test
for stochastic monotonicity, using a kernel smoothed U-statistic to assess the monotonicity of the conditional distribution
in the conditioning variable. Later, Delgado and Escanciano (2012) have suggested a test based on the distance between
the empirical copula and its least concave majorant. In both tests, the asymptotic null distributions are derived under the
independence of X and Y which turns out to be the lfc. As a consequence, the tests are conservative at all points in the null
but the least favorable case. This suggests that power against relevant local alternatives may be limited.

In this paper we show how to improve the power of tests for stochastic monotonicity by using a modified bootstrap
technique to raise the limiting rejection rate of the test to the nominal significance level over a wide region of the null
hypothesis. More specifically, we first derive the limit distributions of a generalization of the statistic of Delgado and
Escanciano (2012) at all points in the null. We then discuss how the standard bootstrap fails to apply, and propose
an alternative bootstrap method. To show the validity of our approach we draw on recent results on the directional
differentiability of the least concave majorant operator (Beare and Moon, 2015; Beare and Shi, 2017) and on the application
of the functional delta method with directionally differentiable operators (Fang and Santos, 2016).

2. Null hypothesis and test statistic

Let X and Y be continuous randomvariables, and let C(u, v) denote the copula of Y and X . The null hypothesis of stochastic
monotonicity can be reformulated in terms of the shape of this copula function. Theorem5.2.10 andCorollary 5.2.11 inNelsen
(2006) state that Y is stochastically increasing in X if and only if C(u, v) is concave in v for any u ∈ [0, 1]. We shall therefore
write our null hypothesis as H0 : C ∈ Θ0, where

Θ0 = {C ∈ Θ : C(u, ·) is concave for each fixed u ∈ [0, 1]},

with Θ denoting the collection of bivariate copula functions on [0, 1]2 with continuous partial derivatives. The alternative
hypothesis is H1 : C ∈ Θ1, where Θ1 = Θ \ Θ0.

It is clear that the partial concavity introduced in the preceding paragraph is not as strong as the general notion of
concavity of a bivariate function. While it is well known that the only concave copula is the Fréchet–Hoeffding upper bound
C(u, v) = min(u, v), there are many copulas which have concave vertical sections,2 and thus belong to Θ0. Vertical sections
of copulas, in fact, can be any functions that are nondecreasing and 1-Lipschitz, provided that they stay between the Fréchet–
Hoeffding upper and lower bounds. Thus, theymay be concave, convex, or otherwise. In Table 2.1, we provide the conditions
for some parametric copulas to be in Θ0.3

Having clarified the null hypothesis, we shall now proceed to the construction of our test statistics. Suppose we observe
n independent and identically distributed copies of (X, Y ), denoted by (Xi, Yi), i = 1, . . . , n. Define the empirical cdfs of X
and Y , and the empirical copula of Y and X as

FX,n(x) =
1
n

n∑
i=1

1(Xi ≤ x), FY ,n(y) =
1
n

n∑
i=1

1(Yi ≤ y) for (x, y) ∈ R2,

Cn(u, v) =
1
n

n∑
i=1

1{FY ,n(Yi) ≤ u, FX,n(Xi) ≤ v} for (u, v) ∈ [0, 1]2. (2.1)

Our test statistic is of the form

Mp
n = n1/2

M̃Cn − Cn

p (2.2)

where ∥ · ∥p is the Lp-norm with respect to the Lebesgue measure on [0, 1]2 given p ∈ [1, ∞], and M̃ is the partial least
concave majorant (hereby, partial lcm) operator applied to the second argument.4 In order to provide a formal definition of
M̃, we shall begin by reviewing the definition of the least concave majorant (lcm) operatorM, and also of the restricted lcm

1 Such questions about the monotonicity arise naturally in many fields of economics. Milgrom (1981) and Milgrom and Shannon (1994) have a general
discussion on the central role of monotonicity in classical economic theory. In particular, stochastic monotonicity is one of the key conditions for certain
Markovianmodels to have a stationary distribution in Lucas and Stokey (1989) andHopenhayn and Prescott (1992). In the IV literature, Blundell et al. (2007)
assume stochastic monotonicity to release the exclusion restriction, while Small et al. (2014) introduce stochastic monotonicity to relax monotonicity
restrictions of IV. We refer to the introductory part of Lee et al. (2009) and Delgado and Escanciano (2012) for more motivation.

2 The vertical section of C at u = u0 refers to the cross-section of the copula at a point u0 ∈ [0, 1], i.e., C(u0, v).
3 Following convention, Φ−1 is the quantile function of the standard normal distribution and Nρ is the joint cumulative normal distribution function

with mean zero and correlation ρ. t−1
ν denotes the inverse cumulative distribution of the univariate t-distribution with degree of freedom ν and tρ,ν is the

multivariate t-distribution with degree of freedom ν, scale parameter ρ and location parameter zero.
4 When p = ∞,M∞

n corresponds to the test statistic in Delgado and Escanciano (2012).
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