Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Research Paper

Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: A numerical and experimental study

PPLIED HERMAL NGINEERING

W.Q. Li^a, H. Wan^a, T.T. Jing^a, Y.B. Li^b, P.J. Liu^a, G.Q. He^a, F. Qin^{a,*}

^a Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China ^b Wuhan Electric Power Technical College, Wuhan 430079, China

HIGHLIGHTS

- A two-equation model was proposed to study heat transfer in MEPCM/foam composite.
- Insertion of metal foam significantly enhanced heat transfer of MEPCM.
- Metal foam unified internal temperature distribution and reduced temperature gradient.
- Higher porosity composite had higher wall temperature and consumed less time to melt.
- Higher pore density composite attained better thermal control for larger area density.

ARTICLE INFO

Keywords: Microencapsulated phase change material Metal foam Thermal management Numerical simulation Experiment Thermal non-equilibrium

ABSTRACT

This article reported an efficient hybrid phase change material (PCM) for passive thermal management that integrated micro-encapsulated phase change material (MEPCM) and metal foam. This PCM composite was aimed to enhance the heat transfer of MEPCM, while avoid the leakage of molten phase change material (PCM). We proposed a two-energy equation model and experiment demonstration to investigate phase change heat transfer inside MEPCM/foam composite. The surface/internal temperatures, interface evolution and non-equilibrium heat transfer in the composite were discussed. Results showed that the pure MEPCM was not suitable for thermal management due to the low thermal conductivity. The wall temperature of the MEPCM/foam composite was only half of the pure MEPCM attributed to the latent heat absorption of MEPCM and thermal enhancement of metal foam. The higher porosity composite obtained higher surface temperature, and also consumed less time to start phase change due to the lower effective thermal conductivity. Besides, better thermal control was achieved by the MEPCM/foam composite with higher pore density attributed to its larger volumetric area. The employment of metal matrix made the internal temperature distribution more homogeneous and reduced the inside temperature gradient.

1. Introduction

The progresses in latent heat energy technologies have alleviated the contradictory imbalance of the demand for thermal energy and the depletion of energy source. Therefore, phase change materials (PCMs) as the heat transfer media have gained renewed research emphasis and have been applied in various fields, such as energy conservation in buildings [1–3], heat storage [4], solar energy [5,6], and passive thermal control [7,8] since PCMs generally possess the advantages of high latent heat density, selectable temperature range and stable chemical property. Typically, the heat storage or passive thermal control is accomplished by absorbing latent heat during phase transitions of organic/inorganic phase change materials (PCMs). However, most types of PCMs have the demerits of volume expansion [9], super cooling issue [10], and particularly low thermal conductivity [9,11].

Confronted with the problem of low thermal conductivity, a number of thermal enhancement technologies were proposed. Pielichowska and Pielichowski [12] provided a comprehensive review on the state-of-art of PCMs for thermal energy storage applications and mainly focused on the insights in thermal enhancement, safety and shape-stabilized

* Corresponding author.

https://doi.org/10.1016/j.applthermaleng.2018.10.006

Received 20 April 2018; Received in revised form 28 September 2018; Accepted 2 October 2018 Available online 04 October 2018

1359-4311/ © 2018 Elsevier Ltd. All rights reserved.

E-mail address: qinfei@nwpu.edu.cn (F. Qin).

Nomenclature		Greek sy	Greek symbols	
a_{sf} C_p c_m d(0.5) d_f	interfacial heat transfer area (1/m) specific heat (J/kgK) mass fraction half of particles' size under this diameter fiber diameter (m)	αν δ ε ω	thermal expansion coefficient (1/K) volume fraction of MEPCM in the pore porosity of the metal foam pore density (PPI)	
d_p	pore diameter (m)	Subscripts		
$ \int_{l} k_{e} \\ h_{sf} \\ H \\ \Delta H \\ PPI \\ q \\ T \\ \Delta T \\ TC \\ t \\ W $	Iquid fraction of core PCM effective thermal conductivity (W/m K) interfacial heat transfer coefficient (W/m ² K) sample height (mm) latent heat (J/g) pore number per inch heat flux (W/m ²) temperature (°C) temperature difference (°C) thermocouple time (min) width (m)	b c f gl h in l p s sh w	bulk core material MEPCM particle glue higher melting point insulation material lower melting point peak melting point metal matrix shell heated surface	
х, у	cartesian coordinates			

technologies for PCMs. Ibrahim [13] reported the review on various techniques of heat transfer enhancement of PCM for passive thermal management. Among these technologies, dispersion of fillers was a simple method to improve thermal conductivity, thereby preferred by amount of researchers [14,15]. However, the discontinuity in solid

structure inevitably increases the thermal resistance between adjacent fillers. Moreover, huge themoproperties discrepancy existed between solid particle and PCM may cause shape-stability issue [16]. Therefore, using continuous thermal enhancers, such as high-conductivity provus foams [17,18], expanded graphite [19] and interlaced mesh [20,21] to

Fig. 1. DSC measurements of thermal properties; (a) Melting points and latent heat of MEPCM; (b) Melting points and latent heat of core PCM; (c) heat capacity of MEPCM.

Download English Version:

https://daneshyari.com/en/article/11020845

Download Persian Version:

https://daneshyari.com/article/11020845

Daneshyari.com