
Integration, the VLSI Journal xxx (2018) 1–8

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

An assertion graph based abstraction algorithm in GSTE and Its application

Desheng Zheng a,b,1, Xiaoyu Li b,*, Guowu Yang d, Hai Wang e, Lulu Tian c,1

a School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
b School of Information & Software Engineering, University of Electronics Science and Technology of China, Chengdu, 611731, China
c School of Automation Engineering, University of Electronics Science and Technology of China, Chengdu, 611731, China
d School of Computer Science & Engineering, University of Electronics Science and Technology of China, Chengdu, 611731, China
e School of Microelectronics & Solid State Electronics, University of Electronics Science and Technology of China, Chengdu, 611731, China

A R T I C L E I N F O

Keywords:
GSTE
State explosion
Assertion graph
Abstraction algorithm

A B S T R A C T

Generalized Symbolic Trajectory Evaluation (GSTE) is an alternative model checking technique based on par-
ticular automata to specify the properties. Despite the success of GSTE, its state explosion remains a major
hurdle when applying it to large industrial designs. This paper presents two efficient theoretical underpinning
abstraction algorithms based on assertion graph to combat the state explosion problem. We implement these
two algorithms as a prototype system for discrete models. Experimental results show that the prototype system
is 10× faster than the former without abstraction.

1. Introduction

After decades of research and development, microprocessor has
evolved into complex system, which is composed of components such as
out-of-order execution, register-renaming, pipelining, speculative, and
multi-level caching. It is a big challenge to ensure the correctness and
fault tolerance in such a complex system. Formal verification [1,2] tech-
niques based on the mathematical methodology have been proposed to
resolve these problems, with functions including model checking [3,4],
theorem proving [5,6], and equivalence proving [7,8].

Symbolic trajectory evaluation (STE) [9] is one of the efficient sym-
bolic model checking (SMC) algorithms, which is especially suited to
verifying the large data-path designs’ properties and also has been
proven in verifying fairly large industrial hardware designs [10]. STE
has been used in word-level verification [9], However, the property
with indefinitely long time interval cannot be expressed in STE. Thus,
generalized symbolic trajectory evaluation (GSTE) [11,12] has been
proposed to resolve this weakness. GSTE is an advanced technique
developed by combining STE and traditional SMC, which will be intro-
duced in Section 2 in details.

This paper presents two theoretical underpinning abstraction algo-
rithms, Minimum Preserved Abstraction (MPA) and Optimized Minimum
Preserved Abstraction (OMPA), based on assertion graphs of GSTE
[11,12]. In order to verify if a model satisfies an assertion graph,

* Corresponding author.
E-mail addresses: xiaoyuuestc@uestc.edu.cn (X. Li), desheng619@gmail.com (D. Zheng).

1 Desheng Zheng and Lulu Tian have contributed equally to this work.

the classical GSTE procedure checks whether 𝜑(e) ⊆ cons(e) [11]. If
such condition is not satisfied, a counterexample will be listed which
is a path on the assertion graph. As one of the classical model
checking methods, GSTE is based on reduced order binary deci-
sion diagrams techniques (ROBDD) [13]. When the state count is up
to 10120 [14], state explosion will be its bottleneck. Our approach
involves abstracting states according to cons(e) with two new algo-
rithms named MPA and OMPA. These two algorithms search the min-
imum intersection from all the cons(e) and split them into indepen-
dent sets, which are abstracted into the unique new states. We imple-
ment these two algorithms as a prototype system for discrete models.
Experimental results show that our approach is highly efficient and
feasible.

The structure of this paper is organized as follows: Section 2 intro-
duces the related work of GSTE, assertion graph and abstraction.
Section 3 gives a brief review of some necessary definitions and nota-
tions in GSTE, such as model, assertion graph, abstraction function
and strong satisfiability definitions. Section 4 defines a new abstraction
function different from the abstraction function defined by Yang [11]
and presents three theorems as the theoretical basis for the next two
algorithms (MPA and OMPA). Section 5 tests feasibility and efficiency
of our algorithms for time and memory usage. Section 6 concludes the
paper and briefly comments on future work.

https://doi.org/10.1016/j.vlsi.2018.03.009
Received 15 December 2017; Accepted 17 March 2018
Available online XXX
0167-9260/© 2018 Published by Elsevier B.V.

Please cite this article in press as: D. Zheng, et al., An assertion graph based abstraction algorithm in GSTE and Its application, Integration, the
VLSI Journal (2018), https://doi.org/10.1016/j.vlsi.2018.03.009

https://doi.org/10.1016/j.vlsi.2018.03.009
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
mailto:xiaoyuuestc@uestc.edu.cn
mailto:desheng619@gmail.com
https://doi.org/10.1016/j.vlsi.2018.03.009

D. Zheng et al. Integration, the VLSI Journal xxx (2018) 1–8

2. Related work

2.1. STE and GSTE

Symbolic Trajectory Evaluation (STE) [15] is the main alternative
to symbolic model checking. It has shown great promise in verifying
medium to large scale industrial hardware designs with a high degree
of automation at both the gate level and the transistor level. But the
specification language of STE has limited expressiveness where only
properties over finite time intervals are allowed. Jain [16] developed a
generalized STE algorithm to check this form with its assertions, which
was mathematically clarified by Chou [17].

Generalized Symbolic Trajectory Evaluation (GSTE) [11,12] is a sig-
nificant extension of STE that has the power to verify all 𝜔-regular
properties but at the same time preserve the benefit of the original
STE. As a powerful, new model-checking approach, GSTE combines the
industrially-proven scalability and capacity of STE with the expressive
power of temporal-logic model checking. Yang presented a case study
on FIFO verification to illustrate the strength of GSTE and demonstrate
its methodology in specifying and verifying large scale designs [18].

2.2. Assertion Graph

The three key aspects of GSTE are: assertion graphs for prop-
erty, a symbolic simulation based on model checker, and a four-
value lattice based on circuit abstraction [19]. An assertion graph is
a labeled flow graph where each edge in the graph is labeled with an
antecedent/consequent pair. The assertion graph provides sequential
stimuli to drive the symbolic simulation of the circuit, and specify the
responses expected from the circuit. Yang et al. have presented a new
model characterization for an assertion graph with important proper-
ties [20]. Hu et al. have done some work on reasoning about assertion
graphs themselves [21]. In our previous work [20,22], we have pre-
sented a novel implication technique relying on direct Boolean reason-
ing on each edge (and vertex) of an assertion graph for assertion graphs,
thus avoiding the reach ability computation in GSTE. Compared with
the above, we do not change the structure of the assertion graph, but
only abstract the states based on assertion graphs in this work.

2.3. Abstraction

Due to state explosion problems, numerous methods have been pro-
posed to reduce the number of states in a model, such as symme-
try reductions [23–25], partial order reductions [26,27], and abstrac-
tion techniques [28–30]. Abstraction techniques are considered to be
the most flexible and regular method to handle the state explosion
problem. Clark et al. [31] divide them into several classes by how
they control the information loss after abstraction: over-approximation
[28,31], under-approximation [32,33], abstract interpretation [29,34]
and 3-valued logics [35,36]. Besides the above methods, many opti-
mizations have been conceived, such as techniques based on ALL-
SAT [37–39] and later extended to the SMT case [40]. Clark et
al. [31] extend a new counterexample-guided abstraction technique
based on their general framework introduced in Ref. [28]. Graf and
Saïdi have proposed the predicate abstraction techniques that abstract
an infinite system (concrete system) into a finite system (abstract
system) [30]. For such predicate abstraction techniques, the user
should supply the predicates and properties [29,41]. Our method
abstracts states according to assertion graph automatically without any
predicates.

GSTE is a model checking technique and greatly benefits from
advanced abstraction methods. Yang and Seger have presented an
abstract interpretation technique to reduce states [42]. Currently,
abstraction is mostly a manual process that requires considerable cre-
ativity and insight [31]. To generalize GSTE to large industrial designs,
automatic abstracting techniques are needed. Chen et al. [43] give auto-

matic abstraction refinement algorithms that can quickly converge to
an appropriate level of abstraction. AutoGSTE [43] is the first auto-
matic abstraction refinement framework for GSTE that completely
eliminates false negatives caused by abstraction imprecision, which
is a comprehensive approach to automatic abstraction refinement for
GSTE. According to our algorithms, we can also realize the automatic
abstraction. Chen et al. present a suite of optimizations targeting auto-
matic abstraction refinement for GSTE [44]. This paper focuses on the
abstraction based on assertion graphs to reduce the time and memory
usage.

3. Preliminaries

This section gives a brief review of the necessary definitions and
notations in GSTE from Ref. [11], such as, assertion graph, model, sat-
isfiability and abstraction function.

3.1. Assertion graph

Definition 1. (Assertion Graph) [11] An assertion graph is a quintuple
G = (V, vI,E, ant, cons) where V is a finite set of vertices, vI ∈ V is the initial
vertex, E ⊆ V × V is a set of edges, satisfying ∀u ∈ V,∃v ∈ V, (u, v) ∈ E,
ant ∶ E → 2S labels each edge e ∈ E with an antecedent ant(e), cons ∶ E →
2S labels each edge e ∈ E with a consequent cons(e).

Remark 1. G = (V, vI,E, ant, cons) is a directed graph. The ant and cons
are the two functions of the assertion graph, which are labeled on the edge.
Note that ant(e) and cons(e) are the subset of S.

Definition 2. (Path) [11] A path in the assertion graph is an edge
sequence 𝜌 such that for all 1 ≤ i < |𝜌|, 𝜌[i] ends at a vertex from which
𝜌[i + 1] starts.

Definition 3. (start(e), end(e), in(e), out(e)) [11] Given all the edges
e ∈ E, start(e) denotes the vertex e starts from; end(e) denotes the vertex e
ends at; in(e) denotes the set of the edges ending at start(e); out(e) denotes
the set of the edges starting from end(e).

Remark 2. In assertion graph G = (V, vI,E, ant, cons), we can know
that for all e ∈ E, in(e) = {ei|end(ei) = start(e)}, start(e) = {u|(u, v) = e},
end(e) = {v|(u, v) = e}, out(e) = {ei|end(e) = start(ei)}.

3.2. Model

Definition 4. (Transition Relation) [11] A relation T ⊆ S × S is a tran-
sition relation if ∀s ∈ S,∃s′ ∈ S, (s, s′) ∈ T, where S is a non-empty set of
finite states.

Definition 5. (Transition Relation Induced Model) [11] The model M
induced by the transition relation T is the pair (pre, post) where the pre-
image transformer pre: 2S → 2S is defined as pre(Q) = {s|∃s′ ∈ Q, (s, s′) ∈
T} for all Q ∈ 2S, and the post-image transformer post: 2S → 2S is defined
as post(Q) = {s′|∃s ∈ Q, (s, s′) ∈ T} for all Q ∈ 2S.

Remark 3. Model M = (S,T) can be expressed as M = (pre, post), which
is a directed graph. Pre and post are two functions of model M. Note that
pre(s) = pre({s}),∀s ∈ S and post(s) = post({s}),∀s ∈ S.

Definition 6. (Trace) [11]. A trace in M = (pre, post) is a state sequence
𝜎 such that 𝜎[i + 1] ∈ post{𝜎[i]}, for all 1 ≤ i ≤ |𝜎|.

3.3. Satisfiability

Definition 7. (Path Satisfiability) [11] Let G = (V, vI,E, ant, cons) be an
assertion graph, and let M = (pre, post) be a model. Given an edge label-
ing 𝛾 ∶ E → 2S where 𝛾 is either ant or cons, A trace 𝜎 in M satisfies a
path 𝜌 of the same length under 𝛾 , denoted by (M, 𝜎) ⊨𝛾 (G, 𝜌), iff 𝜎[i] ∈
𝛾(𝜌[i]),1 ≤ i ≤ |𝜎|. A trace satisfies a path, denoted by (M, 𝜎) ⊨ (G, 𝜌), iff
(M, 𝜎) ⊨ant(G, 𝜌) ⇒ (M, 𝜎) ⊨cons(G, 𝜌).

2

Download	English	Version:

https://daneshyari.com/en/article/11020902

Download	Persian	Version:

https://daneshyari.com/article/11020902

Daneshyari.com

https://daneshyari.com/en/article/11020902
https://daneshyari.com/article/11020902
https://daneshyari.com/

	tooltip zref@0:
	tooltip zref@1:

