
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

On-chip implementation of a low-latency bit-accurate reciprocal square root
unit

Cuauhtémoc R. Aguilera-Galiciaa,∗, Omar Longoria-Gandaraa, Luis Pizano-Escalantea,
Javier Vázquez-Castillob, Manuel Salim-Mazac

a Department of Electronics, Systems and Informatics, ITESO-The Jesuit University of Guadalajara, Tlaquepaque, Mexico
bDepartment of Engineering, Universidad de Quintana Roo, Chetumal, Mexico
cNXP Semiconductors, Mexico

A R T I C L E I N F O

Keywords:
Digital CMOS integrated circuits
Reciprocal square root
Digital signal processing
Fixed-point arithmetic
Newton method
Piecewise-polynomial approximation

A B S T R A C T

Many applications such as gaming, digital signal processing and communications systems, require computation
of the reciprocal square root operation (RSR). Although several architectures have been reported for computing
the RSR operation, these are mainly focused on accelerating high-precision floating-point units. In mobile-device
implementations, fixed-point (FxP) units are preferred due to their low computational cost and power con-
sumption. This article presents an on-chip implementation of a bit-accurate, FxP-RSR unit using a 130 nm CMOS
process. The proposed architecture is based on a piecewise-polynomial approximation in a reduced range of the
RSR function and the Newton-Raphson method. Experimental results show that the manufactured chip exhibits
lower latency and less power consumption than existing standard-cell-based implementations. These char-
acteristics make the proposed chip a useful silicon intellectual property suitable for embedded applications
where low power, low latency, and low hardware cost is required.

1. Introduction

Fast computation of the square root and reciprocal square root
(RSR) operations is required in diverse modern applications. For ex-
ample, in multiple-input multiple-output (MIMO) wireless commu-
nication to perform tasks such as digital modulation [1], channel esti-
mation [2,3], singular-value decomposition [4], and matrix inversion
[5]. Likewise, in the area of digital signal processing these nonlinear
operations are required for matrix decomposition, [6–9], and gaming
for 3D image rendering [10,11].

Physical IPs can be utilized to improve the performance of elec-
tronics applications implemented in low-power embedded systems and
mobile devices with limited computational resources, for example, the
NXP microcontroller based on ARM Cortex-M4 [12]. Where the pro-
cessing unit could present bottlenecks produced by complex operations
such as the following elementary functions: exponential, logarithms,
trig, hyperbolic trig, roots, RSR, among others. In these applications it is
of paramount importance to reduce the microprocessor load, by im-
plementing the complex operations in silicon IPs instead of executing
them by software instructions. These customized blocks improve
overall system performance in terms of speed and power consumption

[8,9,10,11,13,4]. Due to its ever-expanding presence, having an off-the-
shelf RSR intellectual property (IP) reduces time-to-market cycles and
increases resource utilization.

The aforementioned implementations ([2,8,10,11]) have shown the
benefits of using dedicated modules to compute the RSR. However, the
performance of on-chip implementation has not been yet reported in
the open literature, to the authors' best knowledge.

Several double-precision floating-point (FP) architectures for com-
puting the RSR operation have been proposed. In Refs. [14] and [15] a
modified digit-recurrence algorithm is used leading to high-latency (28
cycles). Initial works [16] used an architecture based on rectangular
multipliers. Later [17], showed improved performance when using
smaller multipliers and Taylor series evaluations. The proposal in Ref.
[18] presents the best estimated cost-delay tradeoff among those
mentioned here. It is based on look-up tables (LUTs), polynomial ap-
proximation and one Goldschmidt iteration. These architectures focus
mainly on accelerating high-precision FP units. Hence, they are not
suitable for mobile devices due to the hardware cost and power con-
sumption. For instance [19], reports an double-precision FP unit that
computes the x1/ , x , and x1/ operations. It is synthesized using
180 nm CMOS standard-cells library, requires 0.524437mm2 of area

https://doi.org/10.1016/j.vlsi.2018.04.016
Received 18 December 2017; Received in revised form 16 March 2018; Accepted 29 April 2018

∗ Corresponding author.
E-mail addresses: cuauhtemoc@iteso.mx (C.R. Aguilera-Galicia), olongoria@iteso.mx (O. Longoria-Gandara), luispizano@iteso.mx (L. Pizano-Escalante),

jvazquez@uqroo.edu.mx (J. Vázquez-Castillo), manuel.salim@nxp.com (M. Salim-Maza).

INTEGRATION, the VLSI journal xxx (xxxx) xxx–xxx

0167-9260/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Aguilera-Galicia, C.R., INTEGRATION, the VLSI journal (2018), https://doi.org/10.1016/j.vlsi.2018.04.016

http://www.sciencedirect.com/science/journal/01679260
https://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2018.04.016
https://doi.org/10.1016/j.vlsi.2018.04.016
mailto:cuauhtemoc@iteso.mx
mailto:olongoria@iteso.mx
mailto:luispizano@iteso.mx
mailto:jvazquez@uqroo.edu.mx
mailto:manuel.salim@nxp.com
https://doi.org/10.1016/j.vlsi.2018.04.016


and has a power consumption of 40.8691 mW. These values are too
high considering that [20] reports a single-precision FP unit for em-
bedded applications, which computes the addition, subtraction, multi-
plication, and division operations and it consumes 71.2 mW with an
area of 0.6 mm2 using 180 nm CMOS process.

In addition, FP single-precision designs for computing the square-
root operation have been reported. In Refs. [21] and [22], shared di-
vider/square-root-circuit designs are reported, the integrated-circuit
layouts are shown, the area and delay are specified, however mea-
surements of the manufactured chips are not reported. Moreover, the
technologies (1.2 μm) and design methodologies used in Refs. [21] and
[22] are far from state-of-the-art. A standard-cell implementation of the
RSR based on LUT and a modified NR iteration is presented in Ref. [23].
An improved version of [23] was later proposed in Ref. [24]. Alter-
natively [25], reports a standard-cell implementation of the square root
based on LUTs and Taylor series. Synthesis results from a digit-recur-
rence square-root circuit for two standard-cell technologies (40 nm, and
60 nm) are presented in Ref. [26], which reports an estimated power
consumption for each technology. A digit-recurrence implementation
for computing the x1/ , x , and x1/ operations is presented in Ref.
[27]; it is based on radix-8 for determining the next digit and shows a
latency of eight cycles.

In real mobile applications, the high-demand computing tasks are
implemented in specialized fixed-point (FxP) units. This leverages
lower hardware cost and reduces the power consumption of the FxP
implementations [28,29,3]. Examples of this trend are the applications
presented in Refs. [2,6,8,9], all of which use 16-bit FxP units to com-
pute either the square-root or the RSR operation. Similarly [7], and
[10] documented the use of 23-bit and 32-bit FxP units to perform the
same operations, respectively.

Despite the advantages of the FxP arithmetic for real applications on
mobile devices, few papers have reported an FxP implementation either
of the square-root [29–33], or the RSR [34,3,35].

In this paper, we present the on-chip implementation of a low-la-
tency, bit accurate, FxP RSR unit. The integrated circuit design is based
on a piecewise-polynomial approximation and NR method [34]. The
implementation includes the logical and physical synthesis using
130 nm CMOS (8RF-DM) ASIC technology. The physical chip design
and its verification are performed and the post-silicon verification of
the manufactured chip is reported. The proposed IP delivers 16-bit re-
sults in only two clock cycles. Hereafter the proposed unit is named 2C-
RSR. The experimental results show that the power consumption of the
proposed implementation is lower than previously reported designs
[24,26]. The low latency of the 2C-RSR chip contributes to higher
throughput for low clock frequencies, which is desired in low power
embedded implementations [35]. Hence, the features of the reported IP
are highly relevant for low-power mobile-device applications, such as
[7–9,11].

2. 2C-RSR algorithm

The proposed RSR unit computes the operation

=y x1/ (1)

where ∈ = ∑ =−
−x y x y b, , 2i f

k
i

i1
� with ∈b {0,1}i , and k, f ∈ ℤ are the

number of bits for representing the integer and fractional parts re-
spectively of x and y in FxP format.

In this work, an FxP format is represented by Q(w, f, sign) notation,
where = +w k f is the word-length and ∈sign s u{ , } indicates signed or
unsigned format, respectively. Due to the finite size of w in real im-
plementations, the result computed by (1) is an approximation of the
exact value, i.e., x1/ computed using infinite precision. Nevertheless,
the proposed design is able to provide a result with a maximum error of

−2 /2f for the selected FxP format Q(16,11,u), which makes the result
bit-accurate with respect to the result computed by a double-precision

FP unit (IEEE-754-2008 standard) [36] when this is represented in the
Q(16,11,u) FxP format. We selected this format because it allows to
represent the magnitude of standard-Gaussian random variables, which
is useful to study real-valued random variables whose distributions are
unknown [37].

2.1. Bit-accurate property

Since bit-accurate is not a standardized concept, we define it below
as used in this paper. Let (2) be the conversion operation of v, from
decimal to binary FxP format

=Q v v{ } .w
f w f, (2)

In (2), v is the decimal representation of the result obtained from
any arithmetic operation Θ performed by an FxP arithmetic unit. The
expression vw f, stands for the binary representation of v in FxP format
considering w and f parameters. Likewise, let (3) be the conversion
operation of vFP, from decimal to binary FxP format

=Q v v{ } .w
f

FP FP
w f, (3)

In (3), vFP denotes the decimal representation of the result per-
formed by a double-precision FP arithmetic unit, and vFP

w f, is the binary
representation of vFP in FxP format. Therefore, the bit-accurate property
holds for v when (4) is met

=v v .w f
FP
w f, , (4)

To illustrate the bit-accurate property, Table 1 shows the compar-
ison of two numerical results. The first row shows the result of the 1

9
operation performed by an FP arithmetic unit and its equivalent value
when this is represented in FxP format (which can be obtained by using
the fi(v,0,w,f) Matlab function). The second row shows the result of the
same operation performed by a bit-accurate FxP arithmetic unit using
w=16 and f=11. When this result is represented in Q(16,11,u)
format, all the bits are equal to the corresponding vFP

16,11 value, and it can
be said that the obtained result is bit-accurate. It must be noted that this
does not necessarily holds for a different format, Q(20,15,u) in this
example. The advantage of a bit-accurate result computed by an FxP
unit is that the result can be shared with a more-precise FP unit without
introducing a conversion error.

2.2. 2C-RSR algorithm background

The 2C-RSR chip implements the algorithm reported in Ref. [34].
This is based on the Newton-Raphson (NR) method. The seed for the NR
iteration is computed by a piecewise-polynomial approximation. Due to
the nonlinearity of the RSR function, the polynomials are evaluated in a
limited range of x, namely the working range (wr). This condition im-
proves the polynomial fit and results in a better approximation. For
computing the RSR of x when x is outside wr, a scaling and a de-scaling
step are required. At the end, a rounding step is applied to obtain a bit-
accurate result with a maximum error of ½ unit in the last place (ulp),
with = −ulp 2 f for the Q(w, f, sign) format. Each step of the algorithm is
summarized below.

Table 1
Bit-accurate assertion.

=Θ 1/ 9

Value vx Q v{ }x16
11 Q v{ }x20

15

vFP=0.333333333333333 0.01010101011 0.010101010101011
v=0.33349609375 0.01010101011 0.010101010110000
Is v bit-accurate? yes no

C.R. Aguilera-Galicia et al. INTEGRATION, the VLSI journal xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/11020905

Download Persian Version:

https://daneshyari.com/article/11020905

Daneshyari.com

https://daneshyari.com/en/article/11020905
https://daneshyari.com/article/11020905
https://daneshyari.com

