Accepted Manuscript

Solution-processed barium hydroxide modified boron-doped ZnO bilayer electron transporting materials: Toward stable perovskite solar cells with high efficiency of over 20.5%

Faisal Rehman, Khalid Mahmood, Arshi Khalid, Muhammad Shahzad Zafar, Madsar Hameed

PII: S0021-9797(18)31199-8

DOI: https://doi.org/10.1016/j.jcis.2018.10.011

Reference: YJCIS 24166

To appear in: Journal of Colloid and Interface Science

Received Date: 3 August 2018
Revised Date: 29 September 2018
Accepted Date: 5 October 2018

Please cite this article as: F. Rehman, K. Mahmood, A. Khalid, M. Shahzad Zafar, M. Hameed, Solution-processed barium hydroxide modified boron-doped ZnO bilayer electron transporting materials: Toward stable perovskite solar cells with high efficiency of over 20.5%, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.10.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Solution-processed barium hydroxide modified boron-doped

ZnO bilayer electron transporting materials: Toward stable

perovskite solar cells with high efficiency of over 20.5%

Faisal Rehman^{1,†}, Khalid Mahmood^{1,*,†}, Arshi Khalid², Muhammad Shahzad Zafar³ and

Madsar Hameed¹

¹Department of Chemical & Polymer Engineering, University of Engineering &

Technology Lahore, Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-

Pass, Faisalabad, Pakistan.

²Department of Humanities & Basic Sciences, University of Engineering &

Technology Lahore, Faisalabad Campus, 31/2 Km. Khurrianwala - Makkuana By-

Pass, Faisalabad, Pakistan.

³SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan

University (SKKU), Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-do, Republic of

Korea.

*E-mail: khalid@kaist.ac.kr

† Both authors contribute equally to this work.

Download English Version:

https://daneshyari.com/en/article/11020931

Download Persian Version:

https://daneshyari.com/article/11020931

<u>Daneshyari.com</u>