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ARTICLE INFO ABSTRACT

Over the last few years machine learning (ML) has evolved becoming pervasive in many scientific and industrial
fields. Such success is ignited by the possibility of applying algorithms that can solve complex problems through
generic rule formulations. With such premise, ML surely represents a new opportunity to improve existing design
paradigms.

In this paper we propose a novel ML-driven synthesis methodology that allows to describe generic Boolean
functions through a representative subset of core expressions using Classification Trees (CTs). Obtained circuits
are able to mimic Boolean functions to a certain degree of accuracy, hence the name quasi-exact logic functions.
The proposed synthesis flow enables a smart hardware mapping of quasi-exact logic functions by means of
reduced and ordered decision diagrams. Experiments conducted on a subset of open-source benchmarks de-
monstrate that CTs are indeed able to cover rather complex Boolean functions with a very high degree of
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accuracy, 88% on average, still requiring 3 X less area over standard multi-level circuit counterparts.

1. Introduction

Machine learning (ML) has emerged as a powerful tool that enables
human-inspired computational models. The key feature is to allow
solving complex problems through inductive reasoning built upon
previous knowledge. More specifically, ML is a paradigm where hard-
ware or software systems replicate a few simple learning/reasoning
mechanisms proper of the human brain [1]. Although the first evidence
of such techniques could be set back to the mid 1950's [2], ML has
become pervasive in the last few years, with contaminations in several
commercial and scientific areas, including the field of Electronic Design
Automation (EDA). This leap has been made possible due to the recent
improvements of computing platforms [3-5].

Most of the EDA research is focused on efficient hardware mappings
of those human-inspired paradigms, whilst little effort was spent on
investigating how to take advantage of those biological mechanisms to
solve EDA problems. Pioneering works include those of Li Wang et al.
[6,7] and Guzey et al. [8]. The former described how ML techniques
could be shaped as to address testing and verification of digital circuits
using both supervised and unsupervised learning methodologies. Guzey
was the first to introduce the concept of a real-time Boolean function
learning mechanism where an ad-hoc statistical model evaluates the
output of the Boolean function in order to reconstruct the original logic.
More recently, ML has been used as a design-time utility that forecasts
critical issues in complex digital design [9,10]. Although such
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contributions represent a significant seminal work in the context of ML-
driven EDA, very little effort has been spent in terms of design strate-
gies, with the result that a proper and complete brain-inspired synthesis
flow is still currently missing. In our view, the potentiality brought by
ML techniques should be employed to generate logic circuits that are
able to accelerate the evaluation of a logic function by recreating the
inferential processes proper of the human-brain, where yields are in-
ferred rather than being evaluated. As an example, when people are
asked to perform simple maths they will first identify some useful
characteristic of the problem, e.g., a multiplication involving a power-
of-ten multiplicand, or the possibility of discarding less significant di-
gits as to preserve the order of magnitude of the answer; afterwards
they will infer the result leveraging some logic relationship suggested
by previous experience, e.g., append “0” to the multiplier if the mul-
tiplicand is “10”. As a matter of fact, such inferential processing of the
information is used to skip the actual maths as to provide a reasonably
accurate answer using as few resources as possible. The same concept
can be extended to any kind of human-related reasoning, e.g., decision
making and predictions. In this work, we face the challenge of trans-
ferring this rationale to the Boolean domain, where a logic computation
is replaced by an educated guess of the yield. As a consequence, this
would push the limit of edge computing [11] to new borders where
smarter and more energy efficient ubiquitous devices will be capable of
processing large amount of data at a fraction of the power that is cur-
rently required to run integrated circuits designed with standard
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Fig. 1. Classification problems. Training sample description (a), abstract model representation through a CT structure (b), input space partitioning (c), and clas-

sification of new samples (d).

synthesis flows [12]. Needless to say, achieving this goal implies a clear
departure from classical Boolean logic circuits that evaluate exact, or
approximate, logic rules. This represents the motivation of this work.
We envision a new class of inferential circuits that predict the result of a
logic function by considering the characteristics of the problem (a
power-of-ten multiplicand, as in the previous example), and what logic
rules they require to achieve the desired goal (append a “0” digit to the
multiplier). In this regard, a new dedicated ML-driven logic synthesis
methodology is required to: (i) learn the most representative expres-
sions of a given Boolean function as to build an efficient abstract data
representation model that “replicates”, or “mimics”, the logic behavior
of the Boolean function with the highest degree of accuracy and the
minimum complexity; and (ii) perform ad-hoc hardware mapping stra-
tegies of the obtained data model representation, as to enable smart on-
chip logic function transpositions. We refer to these functions as quasi-
exact logic functions, where logic circuits are obtained by solving a
learning problem that makes use of Classification Trees (CTs). It is
worth to underline that the proposed solution should not be confused
with approximate logic synthesis algorithms [13], nor with previous
techniques that make use of approximate decision tree construction
[14]. Indeed, differences with those solutions are substantial, and can
be summarized as follows. First, approximate synthesis is based on the
assumption that, given a predefined error tolerance, it is possible to
tweak classical Boolean logic synthesis processes by relaxing some
constraints on minterm minimization, as to generate logic networks
that match the desired quality constraints [13,15,16]. On the contrary,
quasi-exact logic functions are built with statistical rules, where the ML-
driven synthesis flow enables the understanding of what decision tree
topology better replicates the logic behavior of the whole Boolean
function. Second, approximate logic synthesis solutions leverage pre-
defined heuristics and rules specific for an application domain [17]. On
the other hand, the proposed solution is orthogonal to the application
since it is aimed at building such rules by recreating an inferential
process during logic synthesis stages. Last, but not least, unlike previous
approximate tree construction algorithms [14], the proposed technique
does not constrain the exploration of the solution space to tree struc-
tures with specific topological characteristics. As a result, the ML-driven
synthesis flow illustrated in this work allows to achieve much smaller,
faster, and less power hungry quasi-exact logic circuits, thus enabling

more resource efficient error-resilient computations [18].

Quasi-exact logic functions have been briefly introduced in a recent
work [19]. In this paper, we extend such initial analysis with a more
comprehensive description of the problem. The contributions of this
paper can be summarized as follows. In the first place, we thoroughly
describe the training and validation phases of CTs, with a focus on
Boolean training set populations. We then show how CTs can be learned
to represent any Boolean logic function, either single or multiple-
output. Lastly, an automated optimization strategy, leveraging reduced
& ordered decision trees, is described as to enable compact on-chip
representations of CTs. Experimental results collected on several open-
source combinational benchmarks demonstrate that logic circuits ob-
tained with the proposed synthesis flow achieve a remarkable accuracy
of 88%, still requiring 3 x less area w.r.t. standard multi-level circuit
counterparts.

2. Background

Machine learning techniques can be classified into two big families:
those for supervised learning and those for unsupervised learning.
Whilst the latter imply a blind search for proper rules that allow to
group objects with similar characteristics, the former are used when
prior knowledge of the problem is available, e.g., the population under
analysis is properly labeled and packed into a training set. Supervised
learning models allow the extraction of common key features among
samples composing the training data-set. More formally, it is possible to
split a generic classification problem in two main phases: (i) training,
during which a training data-set consisting of n samples labeled with
one of the m available classes y; € Y = {y1, ...ym} and described through
p predictor variables X = {xy, ...x,} (Fig. 1-a) is used to learn an effi-
cient data model representation (Fig. 1-b); (ii) validation, during which
a data-set made up of a new set of samples labeled with Y and described
through X is used to quantify the accuracy of the obtained data model
representation. In this regard, Fig. 1-c describes the input space parti-
tioning due to the rules imposed by the model, whereas Fig. 1-d shows
how samples are classified. Although several options for building data
models are available, classification trees represent a solution that
combines high quality-of-result (QoR) with a reasonable simple deci-
sion tree structure [20] which enables complex partitioning of the input
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