
Integration, the VLSI Journal xxx (2018) 1–10

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Real-time emulation of block-based analog circuits on an FPGA

Philipp Tertel *, Lars Hedrich
Institute for Computer Science, Goethe-Universität Frankfurt a. M., Germany

A B S T R A C T

In order to provide a real-time emulation platform for analog signal processing circuits, we propose a block based approach with a constant worst case runtime. We
evaluate an FPGA-based implementation of this approach by comparing its output for different test cases to a non-real-time SPICE simulation. The implementation
runs at a sampling rate of 88.2 kHz and features roundtrip times as low as 0.096 ms (12 bit ADC) and 0.190 ms (16 bit ADC). A completely automated process is
introduced for fitting model parameters of filters and various nonlinear blocks. The fitting process is evaluated based on 35 block examples with R2 values ranging
from 0.967 to 0.999. For complex filter structures we were able to replicate the frequency responses predicted by a SPICE AC analysis accurately. Furthermore we
compare measured transient responses of the FPGA-based emulation with SPICE and discuss advantages and disadvantages of the approach.

1. Introduction

With verification being a major part in design flows for analog cir-
cuits, there is a huge demand for analog simulation. While current simu-
lation techniques are able to produce highly accurate outputs, the time
they need to produce the outputs can be impractical when there is a
need for larger timescale simulations. Additionally, existing simulators
are in general not fast enough to simulate in real-time which prevents
their use for real-time applications and in-circuit emulation. Another
challenge for real-time application is the latency introduced by using
software simulations depending on I/O buffers. We propose an emula-
tion/rapid prototyping technique for analog signal processing circuits
that overcomes the mentioned first limitation by producing fixed cal-
culation times for a time step thus enabling real-time usage. Also our
technique runs on dedicated hardware and does not need I/O buffers
of more than a single sample which results in a very small and fixed
latency. This technique can be used to functionally verify designs early
in the design flow and can be used alongside digital emulation for mixed
signal circuits.

2. Related work

One way of simulating an analog circuit is to create a netlist of
the circuit and then use a SPICE-like analog circuit simulator to do
a transient simulation. However simulation speed of non-trivial cir-
cuits is usually well below real-time, rendering this approach imprac-
tical for simulation of long signals. Furthermore, in-circuit emulation
of the circuit becomes impossible. There have been numerous efforts

* Corresponding author.
E-mail addresses: tertel@em.cs.uni-frankfurt.de (P. Tertel), hedrich@em.cs.uni-frankfurt.de (L. Hedrich).

to make SPICE simulations faster. As these simulations are based on
sparse matrix calculations a natural approach is to use hardware accel-
eration. For example it is possible to reduce the runtime of the LU
factorization part of the SPICE algorithm by using a GPU accelerated
algorithm [1,2]. However, the performance increase as indicated by
the reported results ranges greatly for different circuits. In many cases
the GPU implementations are still outperformed by multithreaded CPU
implementations like NICSLU [3]. A similar approach is to use an FPGA
to run a parallel SPICE implementation [4]. Here speedups of 2.4× (geo-
metric mean) could be observed when comparing runtimes on a Virtex-
6 LX760 with an Intel Core i7 965 running a serial solver. While there
is also active research on faster factorization methods for CPUs [5],
all of these approaches have in common that they cannot guarantee
the convergence of the SPICE algorithm and therefore cannot deliver a
real-time emulation environment for signal processing chains.

Another possible approach is to map the circuit to a field-
programmable analog array (FPAA). As this can be done based on
a high-level block-based Simulink description [6], and consequently
results in a real-time emulation of the circuit, it seems like a natural
solution for the task. However, even with new academic advances in the
area of FPAAs [7,8] which reach 55 and 98 CABs (Configurable Analog
Blocks) of one OTA functionality each, respectively, an inherent issue
for the emulation of large block-based circuits is the signal-to-noise
ratio, the relatively inflexible construction of analog blocks and the
restricted number of analog functionality available. Both approaches
need a lot of CABs to implement a filter. The latest [7] implements
6 bandpass filters with detection logic in the audio range. Commer-
cial FPAAs [9] have up to 20 CABs each being able to implement one

https://doi.org/10.1016/j.vlsi.2018.01.008
Received 29 September 2017; Received in revised form 21 January 2018; Accepted 28 January 2018
Available online XXX
0167-9260/© 2018 Elsevier B.V. All rights reserved.

Please cite this article in press as: P. Tertel, L. Hedrich, Real-time emulation of block-based analog circuits on an FPGA, Integration, the VLSI
Journal (2018), https://doi.org/10.1016/j.vlsi.2018.01.008

https://doi.org/10.1016/j.vlsi.2018.01.008
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
mailto:tertel@em.cs.uni-frankfurt.de
mailto:hedrich@em.cs.uni-frankfurt.de
https://doi.org/10.1016/j.vlsi.2018.01.008


P. Tertel and L. Hedrich Integration, the VLSI Journal xxx (2018) 1–10

Optional Fitting Flow

Block
Netlist

Preparation
Software

Model Fitting
Script

VHDL
Output

Block
Library
(VDHL)

VHDL
Compiler FPGA

ADCs DAC

SPICE

Simulation
Results

Dev. Board

Circuit
Netlists

Fig. 1. Flowchart of the proposed emulation methodology.

biquad filter at most. Thus the number of filters that can be imple-
mented is restricted. Some of these approaches have a more flexible
set of analog functions including multipliers. The available maximum
signal frequency differs depending on the FPAA.

Hardware Description Language (HDL) approaches [10,11] already
focused on using VHDL simulators to evaluate high-level and block-
level models of analog circuits. However the result was not intended to
be real-time or synthesizable for use on an FPGA. They are only used to
perform a simulation.

3. Emulation framework design

Analog signal processing chains can be thought of as interconnected
blocks which either create signals (oscillators) or transform existing sig-
nals (for example filters, rectifiers). We use this block based approach
for our emulation framework. As shown in Fig. 1 we use a netlist defin-
ing the block instances and their connections as input for a preparation
software, which uses the structure defined by the netlist to construct
its output. The block netlist is given in SPICE format, using subcircuit
commands for each block, while the VHDL output links instances of cor-
responding simulation blocks. As the considered circuits are made up
of blocks with common principle, it is possible to recreate the chain
by instantiating implementations of configurable models stored in a
library. In our approach we restrict us to directed analog signal pro-
cessing with blocks having a dedicated input and output. This allows
for easier mapping of the analog signal processing chain into digital
hardware. Each emulation block can calculate its outputs as soon as
its inputs are determined. If we can further ensure that each emulation
block has a fixed maximum runtime to calculate a single time step, the
calculation of an emulation block should be started when the emula-
tions along the longest path (in terms of runtime) leading up to the
block are done. Thus the triggering signals should be routed such that
the sum of necessary clock cycles of the triggering path is the highest
among all input paths of a block, as depicted in Fig. 2. In our imple-
mentation the routing of the trigger signals is done by the preparation
software.

3.1. Block emulation models

The implemented block emulation models consist of:

• First order IIR filters
• FIR filters
• Piecewise quadratic functions
• Integrators

By default, voltages are passed between the blocks on 24 bit buses,
using fixed point values that represent a range of about ±32 V. The

data type used in all block implementations can be customized at com-
pile time making it possible to trade precision for usage of adaptive
logic modules (ALM) on the FPGA. An example of a use case where
this is necessary is when the simulation becomes part of a mixed-signal
emulation and the digital part of the system already occupies a large
part of the FPGA’s resources.

The IIR model, which is mainly used for emulating RC filters can
be either instantiated with specific filter coefficients or with resistor
and capacitor values, defining the cutoff frequency. In the latter case,
the coefficients are calculated at compile time to fit the specified cutoff
frequency.

The IIR filters internally use fixed point arithmetic and evaluate

Vout = a1Voutz−1 + b1Vinz−1 + b0Vin (1)

where Vout and Vin are the output and input Voltages, a1, b0 and a0 are
the filter coefficients and z−1 is the discrete time operator for a unit
delay. The computations are done in 2 cycles of the 50 MHz clock. This
concept could easily be extended to filters with higher order.

In order to enable more flexible emulation of filters, a generic
FIR emulation block was designed, that can implement a linear time
invariant system with short impulse response. This is done by con-
volving the input signal and the impulse response. The implemen-
tation uses a buffer with length of the given impulse response to
store intermediate results. In each 50 MHz cycle two values of the
buffer are updated, which when running an emulation with a sam-
pling rate of 88.2 kHz allows for impulse responses with a maximum
length of 1128 samples. As the results necessary for the output are
computed first, the implementation triggers the next block after 2
cycles of 50 MHz while continuing to process the rest of the inter-
mediate results. While it would be possible to process more than
two buffer entries at a time, and thus theoretically allowing for even
longer impulse responses, it would not necessarily be possible to fit
such long impulse responses, due to the number of required regis-
ters.

While the two aforementioned models show that filters can be fit-
ted, there are many conceivable blocks which do not show the filter-
like behavior. Examples are rectifiers and limiters. For a lot of non-
filter blocks the output voltage can be described as a function of the
input voltage. Often we could separate the linear dynamic from the
nonlinear static behavior leading to Hammerstein-Wiener models [12].
E.g. an ideal full-wave rectifier without filtering shows an input/output
relationship similar to y = abs(x) function. However even if the out-
put voltage is a function of the input voltage, the behavior of diodes
and other components is more complex than the simple abs() example.
In order to approximate such functions we try to determine appropri-
ate regions in which the function can be described as a second order
polynomial. Two examples for the result of such piecewise approxima-
tions are given in Fig. 3. These examples show that the success of the
approximation is dependent on the behavior of the circuit. While the
limiter seems to be faithfully modeled over the whole range of input
voltages, the half wave rectifier shows ambiguity for very low posi-
tive input voltages. Such behaviors can not be recreated by this model
alone. Furthermore the model is limited to second order polynomials in
order to keep resource usage minimal. The HDL implementation only
has to determine the appropriate set of coefficients by comparing the
input voltage with the regions, and subsequently evaluate the polyno-
mial. The coefficients are stored in combination with the maximum
of the interval in which they are to be used. Even though the coeffi-
cients are stored ordered by this maximum value, the linear search to
find the appropriate interval is not canceled as soon as the input volt-
age is higher than the currently visited maximum value. This is done
in order to keep the amount of cycles constant which the block takes
before triggering the following. Consequently the piecewise quadratic
blocks take k + 2 cycles for processing, where k is the number of inter-
vals.

2



Download	English	Version:

https://daneshyari.com/en/article/11020975

Download	Persian	Version:

https://daneshyari.com/article/11020975

Daneshyari.com

https://daneshyari.com/en/article/11020975
https://daneshyari.com/article/11020975
https://daneshyari.com/

	tooltip zref@0: 
	tooltip zref@1: 
	tooltip zref@5: 


