
Full Length Article

A cooperative GPU-based Parallel Multistart Simulated Annealing
algorithm for Quadratic Assignment Problem

Emrullah Sonuc a,⇑, Baha Sen b, Safak Bayir a

aDepartment of Computer Engineering, Karabuk University, Turkey
bDepartment of Computer Engineering, Yildirim Beyazit University, Turkey

a r t i c l e i n f o

Article history:
Received 9 May 2018
Revised 1 August 2018
Accepted 1 August 2018
Available online 14 August 2018

Keywords:
Combinatorial optimization
CUDA
GPU
Multistart Simulated Annealing
Parallel algorithms
Quadratic Assignment Problem

a b s t r a c t

GPU hardware and CUDA architecture provide a powerful platform to develop parallel algorithms.
Implementation of heuristic and metaheuristic algorithms on GPUs are limited in literature. Nowadays
developing parallel algorithms on GPU becomes very important. In this paper, NP-Hard Quadratic
Assignment Problem (QAP) that is one of the combinatorial optimization problems is discussed.
Parallel Multistart Simulated Annealing (PMSA) method is developed with CUDA architecture to solve
QAP. An efficient method is developed by providing multistart technique and cooperation between
threads. The cooperation is occurred with threads in both the same and different blocks. This paper
focuses on both acceleration and quality of solutions. Computational experiments conducted on many
Quadratic Assignment Problem Library (QAPLIB) instances. The experimental results show that PMSA
runs up to 29x faster than a single-core CPU and acquires best known solution in a short time in many
benchmark datasets.
� 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Quadratic Assignment Problem (QAP) was mathematically
modelled by Koopsman and Beckman in 1957 and applied in the
field of economical activities [1]. QAP is one of the NP-hard combi-
natorial optimization problems. The problem aims at assigning
n number of facilities to n number of locations with minimum cost.
When the problem solving is achieved, each facility will be
assigned to a location and any facility should not be left empty.
As a permutation problem, QAP can be mathematically formulated
as follows:

cost pð Þ ¼
Xn
i¼1

Xn
j¼1

di;j � f p ið Þ ; p jð Þ ð1Þ

where d is an nxn dimensional matrix at which the distances
between the locations are kept and f is annxndimensional matrix
in which the flow cost between the facilities are kept. The aim is
to find the permutation array that may obtain the minimum value
of cost function.

QAP was used in determining the number of connections
among the backboard wiring components [2], scheduling problem
[3], designing of a typewriter keyboard, and control panel [4] in the
fields of archaeology [5] and numerical analysis [6]. Along with
them, its most common usage field is seen as facility layout prob-
lem. Dickey and Hopkins used QAP in the settlement of buildings in
the university campus [7], Elshafei used QAP in the layout plan of
hospital [8] and Bos used QAP in a problem relevant to zoning of
forest parks [9].

As can be seen in the solution methods of various NP-hard prob-
lems, the exact methods are not able to find optimum or near-
optimum results within a reasonable time in QAP solution as the
size of problem increases. The exact solution methods offered for
QAP in the literature studies are applicable for the methods of
which dataset size belonging to the problem is n 6 30. Therefore,
heuristic and metaheuristic methods are applied to QAP. Simulated
Annealing, Tabu Search, Genetic Algorithm, Ant Colony, Scatter
Search, Particle Swarm Optimization, and Memetic Algorithm
may be given as examples for the metaheuristic methods used in
solution of QAP. Along with them, there are also hybrid studies
at which different metaheuristic methods have been used together.
According to the studies on QAP, the most popular algorithms
which are applied on QAP, are Simulated Annealing, Tabu Search
and Ant Colony. More detailed information is given in the surveys
concerning to QAP [10,11].

https://doi.org/10.1016/j.jestch.2018.08.002
2215-0986/� 2018 Karabuk University. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: esonuc@karabuk.edu.tr (E. Sonuc), bsen@ybu.edu.tr (B. Sen),

safakbayir@karabuk.edu.tr (S. Bayir).

Peer review under responsibility of Karabuk University.

Engineering Science and Technology, an International Journal 21 (2018) 843–849

Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: www.elsevier .com/ locate / jestch

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2018.08.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jestch.2018.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:esonuc@karabuk.edu.tr
mailto:bsen@ybu.edu.tr
mailto:safakbayir@karabuk.edu.tr
https://doi.org/10.1016/j.jestch.2018.08.002
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch


Since metaheuristic methods are computationally expensive,
parallel algorithms must be designed. Various metaheuristic meth-
ods are parallelized on CPU or GPU. In the studies concerning to
GPU, CUDA (Compute Unified Device Architecture) architecture
was used and implemented in different fields. CUDA is the parallel
computation platform and programming model developed by NVI-
DIA. It was developed on GPU hardware and has high capacity
computing capability [12].

Multistart techniques allow to start problem solving with dif-
ferent starting permutations used in the serial and parallel studies
with the aim of increasing the efficiency of metaheuristic methods.
The general aim for these studies is to develop a method using a
multi-start technique to obtain good quality results in a reasonable
time.

In this paper, Simulated Annealing algorithm was parallelized
on GPU using CUDA platform for solving QAP. It was aimed to
obtain an optimum faster result by ensuring that the threads
started with a different permutation array (multi-start). It was
aimed to develop an efficient method at which both intra-block
and inter-block communication were achieved between the
threads. Related work regarding GPU-based optimization algo-
rithms and metaheuristics for QAP is considered in Section 2; the
information concerning the developedmethod is given in Section 3;
the implementation of method on GPU is given in Section 4; the
results obtained in this study are shown and interpreted in
Section 5; and finally, Section 6 states some conclusions and future
work.

2. Related work

Dokeroglu and Cosar [13] developed a method called Multistart
hyper-heuristic algorithm that operates parallel on CPU and
applied the method on QAP. In their study, Genetic Algorithm is
run on the grid at first phase and then several heuristic mecha-
nisms are used for improving solution quality. They highlighted
the performance on the results by emphasizing the multistart
method. According to their experiments, improvement in the
average deviation is %27 when the multistart mechanism is used.
Ferreiro et al. [14] presented a parallel algorithm on CUDA with
Simulated Annealing method. They have presented both asyn-
chronous and synchronous parallel version in their study. Accord-
ing to their experiments on the mathematical test functions, the
synchronous version has better performance in terms of accuracy
and computational cost. Sonuc et al. have presented a parallel
Simulated Annealing algorithm for solving 0–1 Knapsack Problem
[15] and Weapon-Target Assignment Problem [16]. Both studies
are developed on GPU and according to the results, speedup is
achieved 7x to 16x for 0/1 Knapsack Problem and 92x to 250x
for Weapon-Target Assignment Problem. Tsutsui and Fujimoto
[17] applied Ant Colony and Tabu Search methods on CUDA and
presented a hybrid algorithm called Move-Cost Adjusted Thread
Assignment. Acceleration has been used for comparison between
GPU and CPU in their study. Paul [18] presented a parallel version
of Simulated Annealing using CUDA on GPU and applied on QAP
formula. In this study, comparison is performed only in terms of
acceleration. According to their experiments, they found up to
100 times better than non-parallel version for acceleration. James
et al. [19] proposed a Cooperative Parallel Tabu Search (CPTS) for
QAP and focused on average percentage deviation. According to
their experiments, CPTS is shown to meet or exceed the average
solution quality of many of approaches in the literature. Czapiński
[20] presented a study by using Parallel Multistart Tabu Search
(PMTS) method on CUDA for QAP and used acceleration and
relative percentage deviation as the comparison criterion. Accord-
ing to their experiments, PMTS runs up to 420x faster than a

single-core CPU. Chaparala et al. [21] solved the QAP using parallel
algorithm that employs a 2-opt heuristic on GPU and used the
well-known QAPLIB datasets for performance comparison. Their
solution provides effective speedups and gives a small penalty in
terms of accuracy. Novoa et al. [22] developed a parallel tabu
search algorithm to solve the QAP on GPU and compared the
results with their studies at past using runtime and gap. A survey
about QAP optimization algorithms applied on GPU can be found
in [23].

3. The proposed method

In this section, the stages relevant to implementation of
Simulated Annealing method on GPU are mentioned. Sequential
Simulated Annealing method is shortly mentioned in Section 3.1;
the parallel implementation of the method is presented and
schematically described in Section 3.2.

3.1. Sequential Simulated Annealing

Simulated Annealing has been developed by Kirkpatrick and
Vecchi [24] in 1983 with the aim of finding global minimum or
maximum point of function belonging to the problems that have
more than one local minimum or maximum points. The status of
a physical system is used to solve a method problem. A solid sub-
stance is melted and heated up to a specific heat temperature.
Then, it is performed for cooling slowly. Within the process of this
annealing procedure, the aim is to ensure that the substance
reaches its the best form with a smooth crystallization. The energy
of the substance represents the cost function of the problem.
Metropolis [25] criterion is used to accept or reject for neighbor
solution. If the difference between two energies is considered as
DE, the acceptance criterion is defined as below:

P ¼ exp �DE
T

� �
ð2Þ

where T is potential temperature belonging to current iteration of
the method, and P is the acceptance probability of each neighbor
solution the annealing process. The temperature is decreased to a
target temperature by cooling factor. When it reaches a target tem-
perature, the method is stopped. Except for that, an iteration num-
ber or time dependent termination methods for Simulated
Annealing can be used.

Simulated Annealing method was used for the first time in the
solution of QAP by Burkard and Rendl [26] in 1984. Along with
that, various studies have been done in which Simulated Annealing
method is used for solution of QAP [27–29]. The pseudocode of
Simulated Annealing algorithm is as follows (See Fig. 1).

3.2. Parallel multistart Simulated Annealing (PMSA)

Use of the multistart technique on metaheuristic methods pro-
vides good quality results for solution of combinatorial problems
[30]. As in metaheuristic methods, multistart technique is also
used for Simulated Annealing algorithm in [20,31]. Besides, multi-
start, shown in Fig. 2, is a very efficient technique for parallel algo-
rithms and it is commonly used in the literature [20]. Each thread
starts with own sequence for solving the problem and communi-
cates to share results in periodically during this process. After shar-
ing results, the threads begin a new iteration with new sequences
taken from the thread having the best quality result.

In PMSA, the threads in the blocks on GPU communicate with
the threads in its blocks at first. The synchronization mechanism
between the threads in CUDA platform occurs only between the
threads located in the same block using shared memory. According

844 E. Sonuc et al. / Engineering Science and Technology, an International Journal 21 (2018) 843–849



Download English Version:

https://daneshyari.com/en/article/11021045

Download Persian Version:

https://daneshyari.com/article/11021045

Daneshyari.com

https://daneshyari.com/en/article/11021045
https://daneshyari.com/article/11021045
https://daneshyari.com

