
J. Parallel Distrib. Comput. 123 (2019) 26–45

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Gradual stabilization✩

Karine Altisen a, Stéphane Devismes a,∗, Anaïs Durand a, Franck Petit b

a VERIMAG UMR 5104, Université Grenoble Alpes, France
b LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, France

h i g h l i g h t s

• We introduce the notion of gradual stabilization.
• We propose a gradually stabilizing unison algorithm.
• We study the necessity of the system assumptions made for our algorithm.

a r t i c l e i n f o

Article history:
Received 1 July 2017
Received in revised form 15 June 2018
Accepted 3 September 2018
Available online xxxx

MSC:
68W15
68M15

Keywords:
Self-stabilization
Synchronization problems
Unison
Gradual stabilization
Superstabilization
Safe-convergence

a b s t r a c t

We consider dynamic distributed systems, i.e., distributed systems that can suffer from topological changes
over the time. Following the superstabilizing approach, we assume here that topological changes are
transient events. In this context, we introduce the notion of gradual stabilization under (τ , ρ)-dynamics
(gradual stabilization, for short). A gradually stabilizing algorithm is a self-stabilizing algorithm with the
following additional feature: after up to τ dynamic steps of a given type ρ occur starting from a legitimate
configuration, it first quickly recovers to a configuration from which a specification offering a minimum
quality of service is satisfied. It then gradually converges to specifications offering stronger and stronger
safety guarantees until reaching a configuration (1) fromwhich its initial (strong) specification is satisfied
again, and (2) where it is ready to achieve gradual convergence again in case of up to τ new dynamic
steps of type ρ. A gradually stabilizing algorithm being also self-stabilizing, it still recovers within finite
time (yet more slowly) after any other finite number of transient faults, including for example more than
τ arbitrary dynamic steps or other failure patterns such as memory corruptions. We illustrate this new
property by considering three variants of a synchronization problem respectively called strong, weak, and
partial unison. We propose a self-stabilizing unison algorithmwhich achieves gradual stabilization in the
sense that after one dynamic step of a certain type BULCC (such a step may include several topological
changes) occurs starting from a configurationwhich is legitimate for the strong unison, itmaintains clocks
almost synchronized during the convergence to strong unison: it satisfies partial unison immediately after
the dynamic step, then converges in at most one round to weak unison, and finally re-stabilizes to strong
unison.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In 1974,Dijkstra [9] introduced self-stabilization, a general paradigm
to enable the design of distributed systems tolerating any finite
number of transient faults.1 Consider the first configuration after
all transient faults cease. This configuration is arbitrary, but no
other transient faults will ever occur from this configuration. By

✩ This study has been partially supported by the anr projects Descartes, France
(ANR-16-CE40-0023) and Estate, France (ANR-16-CE25-0009).
∗ Corresponding author.

E-mail addresses: Karine.Altisen@univ-grenoble-alpes.fr (K. Altisen),
Stephane.Devismes@univ-grenoble-alpes.fr (S. Devismes),
Anais.Durand@univ-grenoble-alpes.fr (A. Durand), Franck.Petit@lip6.fr (F. Petit).
1 Transient faults have low frequency and results in perturbing the state of the

system.

abuse of language, this configuration is referred to as arbitrary
initial configuration of the system in the literature. Then, a self-
stabilizing algorithm (provided that faults have not corrupted
its code) guarantees that starting from such an arbitrary initial
configuration, the system recovers within finite time, without any
external intervention, to a so-called legitimate configuration from
which its specification is satisfied. Thus, self-stabilizationmakes no
hypotheses on the nature (e.g., memory corruptions or topological
changes) or extent of transient faults that could hit the system, and
the system recovers from the effects of those faults in a unified
manner. Such versatility comes at a price, e.g., after transient faults
cease, there is a finite period of time, called the stabilization phase,
during which the safety properties of the system are violated.
Hence, self-stabilizing algorithms are mainly compared according
to their stabilization time, the maximum duration of the stabiliza-
tion phase. Formany problems, the stabilization time is significant,

https://doi.org/10.1016/j.jpdc.2018.09.002
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.09.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.09.002&domain=pdf
mailto:Karine.Altisen@univ-grenoble-alpes.fr
mailto:Stephane.Devismes@univ-grenoble-alpes.fr
mailto:Anais.Durand@univ-grenoble-alpes.fr
mailto:Franck.Petit@lip6.fr
https://doi.org/10.1016/j.jpdc.2018.09.002

K. Altisen et al. / J. Parallel Distrib. Comput. 123 (2019) 26–45 27

e.g., for synchronization problems [2] and more generally for non-
static problems [13] (such as token passing or broadcast) the lower
bound is Ω(D) rounds, whereD is the diameter of the network. By
definition, the stabilization time is impacted by worst case scenar-
ios. Now, in most cases, transient faults are sparse and their effect
may be superficial. Recent research thus focuses on proposing self-
stabilizing algorithms that additionally ensure drastically smaller
convergence times in favorable cases.

Defining the number of faults hitting a network using somekind
of Hamming distance (the minimal number of processes whose
state must be changed in order to recover a legitimate configura-
tion), variants of the self-stabilization paradigmhave been defined,
e.g., a time-adaptive self-stabilizing algorithm [25] additionally
guarantees a convergence time in O(k) time-units when the initial
configuration is at distance at most k from a legitimate configura-
tion.

The property of locality consists in avoiding situations in which
a small number of transient faults causes the entire system to be
involved in a global convergence activity. Locality is, for example,
captured by fault containing self-stabilizing algorithms [14], which
ensure that when few faults hit the system, the faults are both
spatially and temporally contained. ‘‘Spatially’’ means that if only
few faults occur, those faults cannot be propagated further than a
preset radius around the corrupted processes. ‘‘Temporally’’ means
quick stabilization when few faults occur.

Some other approaches consist in providing convergence times
tailored by the type of transient faults. For example, a supersta-
bilizing algorithm [11] is self-stabilizing and has two additional
properties when transient faults are limited to a single topological
change. Indeed, after adding or removing one link or process in the
network, a superstabilizing algorithm recovers fast (typically O(1)
rounds), and a safety predicate, called a passage predicate, should
be satisfied all along the stabilization phase.

Contribution. In this paper, we consider distributed systems that
can suffer from topological changes over the time, also referred
to as dynamic distributed systems in [11]. Following the supersta-
bilizing approach, we assume here that topological changes are
transient events. In this context, we introduce a specialization of
self-stabilization called gradual stabilization under (τ , ρ)-dynamics.
An algorithm is gradually stabilizing under (τ , ρ)-dynamics if it is
self-stabilizing and satisfies the following additional feature. After
up to τ dynamic steps2 of type ρ3 occur starting from a legiti-
mate configuration, a gradually stabilizing algorithm first quickly
recovers a configuration from which a specification offering a
minimumquality of service is satisfied. It then gradually converges
to specifications offering stronger and stronger safety guarantees
until reaching a configuration (1) from which its initial (strong)
specification is satisfied again, and (2) where it is ready to achieve
gradual convergence again in case of up to τ new dynamic steps of
type ρ. Of course, the gradual stabilization makes sense only if the
convergence to every intermediate weaker specification is fast.

We illustrate this new property by considering three variants
of a synchronization problem respectively called strong, weak, and
partial unison. In these problems, each process should maintain a
local clock. We restrict here our study to periodic clocks, i.e., all
local clocks are integer variables whose domain is {0, . . . , α − 1},
where α ≥ 2 is called the period. Each process should regularly
increment its clockmoduloα (liveness)while fulfilling some safety
requirements. The safety of strong unison imposes that at most
two consecutive clock values exist in any configuration of the

2 N.b., a dynamic step is a step containing topological changes.
3 Precisely, ρ is a binary predicate over graphs, representing network topologies,

such that ρ(G,G′) is true if and only if it is possible for the system to switch from
topology G to topology G′ in a single (dynamic) step.

system. Weak unison only requires that the difference between
clocks of every two neighbors is at most one increment. Finally, we
define partial unison as a property dedicated to dynamic systems,
which only enforces the difference between clocks of neighboring
processes present before the dynamic steps to remain at most one
increment.

Wepropose a self-stabilizing strong unison algorithmSU which
works with any period α ≥ 2 in an anonymous connected network
of n processes. SU assumes the knowledge of two values µ and
β , where µ is any value greater than or equal to max(2, n), α
should divide β , and β > µ2. SU is designed in the locally shared
memory model and assume the distributed unfair daemon, the
most general daemon of themodel. Its stabilization time is at most
n+(µ+1)D+1 rounds,wheren (resp.D) is the size (resp. diameter)
of the network.

We then slightly modify SU to make it gradually stabilizing
under (1,BULCC)-dynamics. In particular, the parameter µ should
now be greater than or equal to max(2,N), where N is a bound on
the number of processes existing in any reachable configuration.
Our gradually stabilizing variant of SU is called DSU . Due to the
slight modifications, the stabilization time of DSU is increased
by one round compared to the one of SU . The condition BULCC
restricts the gradual convergence obligation to dynamic steps,
called BULCC-dynamic steps, that fulfill the following conditions.
A BULCC-dynamic stepmay contain several topological events, i.e.,
link and/or process additions and/or removals. However, after such
a step, the network should (1) contain atmostN processes, (2) stay
connected, and (3) if α > 3, every process which joins the system
should be linked to at least one process already in the system
before the dynamic step, unless all of those have left the system.
Condition (1) is necessary to have finite periodic clocks inDSU .We
show the necessity of condition (2) to obtain our results whatever
the period is, while we proved that condition (3) is necessary for
our purposes when the period α is fixed to a value greater than 5.
Finally, we exhibit pathological cases for periods 4 and 5, in case
we do not assume condition (3).

DSU is gradually stabilizing because after one BULCC-dynamic
step from a configurationwhich is legitimate for the strong unison,
it immediately satisfies the specification of partial unison, then
converges to the specification ofweak unison in atmost one round,
and finally retrieves, after at most (µ+1)D1+1 additional rounds
(where D1 is the diameter of the network after the dynamic step),
a configuration (1) fromwhich the specification of strong unison is
satisfied, and (2) where it is ready to achieve gradual convergence
again in case of another dynamic step.

Notice that DSU being also self-stabilizing (by definition), it
still converges to a legitimate configuration of the strong unison
after the system suffers fromarbitrary other kinds of transient fault
including, for example, several arbitrary dynamic steps. However,
in such cases, there is no safety guarantees during the stabilization
phase.

Relatedwork. Gradual stabilization is related to twoother stronger
forms of self-stabilization, namely, safe-converging self-stabilization
[19] and superstabilization [11]. The goal of a safely converging
self-stabilizing algorithm is to first quickly (within O(1) rounds
is the usual rule) converge from an arbitrary configuration to
a feasible legitimate configuration, where a minimum quality of
service is guaranteed. Once such a feasible legitimate configura-
tion is reached, the system continues to converge to an optimal
legitimate configuration, where more stringent conditions are re-
quired. Hence, the aim of safe-converging self-stabilization is also
to ensure a gradual convergence, but only for two specifications.
However, such a gradual convergence is stronger than ours as it
should be ensured after any step of transient faults,4 while the

4 Such transient faults may include topological changes, but not only.

Download English Version:

https://daneshyari.com/en/article/11021093

Download Persian Version:

https://daneshyari.com/article/11021093

Daneshyari.com

https://daneshyari.com/en/article/11021093
https://daneshyari.com/article/11021093
https://daneshyari.com

