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We consider the synthesis of distributed implementations for specifications in parameter-
ized temporal logics such as PROMPT–LTL, which extends LTL by temporal operators 
equipped with parameters that bound their scope. For single process synthesis, it is 
well-established that such parametric extensions do not increase worst-case complexities. 
For synchronous distributed systems, we show that, despite being more powerful, 
the realizability problem for PROMPT–LTL is not harder than its LTL counterpart. For 
asynchronous systems, we have to express scheduling assumptions and therefore consider 
an assume-guarantee synthesis problem. As asynchronous distributed synthesis is already 
undecidable for LTL, we give a semi-decision procedure for the PROMPT–LTL assume-
guarantee synthesis problem based on bounded synthesis. Finally, we show that our results 
extend to the stronger logics PLTL and PLDL.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Linear Temporal Logic [1] (LTL) is the most prominent specification language for reactive systems and the basis for indus-
trial languages like ForSpec [2] and PSL [3]. Its advantages include a compact variable-free syntax and intuitive semantics 
as well as the exponential compilation property, which explains its attractive algorithmic properties: every LTL formula can 
be translated into an equivalent Büchi automaton of exponential size [4]. This yields a polynomial space model checking 
algorithm and a doubly-exponential time algorithm for solving two-player games. Such games solve the monolithic LTL
synthesis problem: given a specification, construct a correct-by-design implementation.

However, LTL lacks the ability to express timing constraints. For example, the request-response property G(req → F resp)

requires that every request req is eventually responded to by a resp. It is satisfied even if the waiting times between requests 
and responses diverge, i.e., it is impossible to require that requests are granted within a fixed, but arbitrary, amount of time. 
While it is possible to encode an a-priori fixed bound for an eventually into LTL, this requires prior knowledge of the 
system’s granularity and incurs a blow-up when translated to automata, and is thus considered impractical.

To overcome this shortcoming of LTL, Alur et al. introduced parametric LTL (PLTL) [5], which extends LTL with param-
eterized operators of the form F≤x and G≤y , where x and y are variables. The formula G(req → F≤x resp) expresses that 
every request is answered within an arbitrary, but fixed, number of steps α(x). Here, α is a variable valuation, a mapping of 
variables to natural numbers. Typically, one is interested in whether a PLTL formula is satisfied with respect to some vari-
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able valuation, e.g., model checking a transition system S against a PLTL specification ϕ amounts to determining whether 
there is an α such that every trace of S satisfies ϕ with respect to α. Alur et al. [5] showed that the PLTL model checking 
problem is PSpace-complete. Due to monotonicity of the parameterized operators, one can assume that all variables y in 
parameterized always operators G≤y are mapped to zero, as variable valuations are quantified existentially in the problem 
statements. Dually, again due to monotonicity, one can assume that all variables x in parameterized eventually operators 
F≤x are mapped to the same value, namely the maximum of the bounds. Thus, in many cases the parameterized always 
operators and different variables for parameterized eventually operators are not necessary.

Motivated by this, Kupferman et al. introduced PROMPT–LTL [6], which can be seen as the fragment of PLTL without 
the parameterized always operator and with a single bound k for the parameterized eventually operators. They proved that 
PROMPT–LTL model checking is PSpace-complete and solving PROMPT–LTL games is 2ExpTime-complete, i.e., not harder 
than LTL games. While the results of Alur et al. rely on involved pumping arguments, the results of Kupferman et al. are all 
based on the so-called alternating color technique, which basically allows to reduce PROMPT–LTL to LTL.

Intuitively, one introduces a new proposition that is thought of as coloring traces of a system. Then, one replaces each 
parameterized eventually operator F≤x ϕ by an LTL formula requiring ϕ to hold within at most one color change. If the 
distance between color changes is bounded from above, then satisfaction of the rewritten formula implies the existence of 
a bound k for the bounded eventually operators such that the original formula is satisfied with respect to k. Dually, if the 
distance between color changes is bounded from below, then the other implication holds: the original PROMPT–LTL formula 
implies the rewritten LTL formula.

When applying this equivalence, one has to specify how the truth values for the new atomic proposition coloring the 
traces are determined. In a game setting (in particular in synthesis), the player who aims to satisfy the PROMPT–LTL formula 
determines these truth values and is required to change colors infinitely often. Then, a finite-state strategy automatically 
ensures an upper bound on the distance between color changes.

Later, the result on PROMPT–LTL games was extended to PLTL games [7], relying on the monotonicity properties ex-
plained above and an application of the alternating color technique. These results show that adding parameters to LTL does 
not increase the asymptotic complexity of the model checking and the game-solving problem, which is still true for even 
more expressive logics like Parametric Linear Dynamic Logic (PLDL) [8] and PLTL and PLDL with costs [9]. The former logic 
is an extension of PLTL with the full expressiveness of the ω-regular languages. The latter logics are evaluated in weighted 
systems and generalize PLTL and PLDL by bounding the parameterized operators in the accumulated weight instead of 
bounding them in time.

The synthesis problems mentioned above assume a setting of complete information, i.e., every part of the system has a 
complete view on the system as a whole. However, this setting is unrealistic in distributed systems. Based on this observa-
tion, distributed synthesis is defined as the problem of synthesizing multiple components with incomplete information. Since 
there are specifications that are not implementable, one differentiates synthesis from the corresponding decision problem, 
i.e., the realizability problem of a formal specification. We focus on the latter, but note that typically algorithms for the 
realizability problem also solve the synthesis problem, as they rely on constructing implementations to prove realizability. 
This also holds in our work here.

The realizability problem for distributed systems dates back to work of Pnueli and Rosner in the early nineties [10]. They 
showed that the realizability problem for LTL becomes undecidable already for the simple architecture of two processes with 
pairwise different inputs. In subsequent work, it was shown that certain classes of architectures, like pipelines and rings, can 
still be synthesized automatically [11,12]. Later, a complete characterization of the architectures for which the realizability 
problem is decidable was given by Finkbeiner and Schewe by the information fork criterion [13]. Intuitively, an architecture 
contains an information fork if there is an information flow from the environment to two different processes where the 
information to one process is hidden from the other and vice versa. The distributed realizability problem is decidable exactly 
for those architectures without an information fork. Beyond decidability results, semi-decision procedures like bounded 
synthesis [14] give an architecture-independent synthesis method that is particularly well-suited for finding small-sized 
implementations. Bounded synthesis searches for finite-state implementations of a fixed size by encoding the problem as a 
constraint system in a decidable first-order theory. In case of a positive answer, the result is returned, otherwise the bound 
is increased. If there is an upper bound on the size of a finite-state implementation, then bounded synthesis is a complete 
decision procedure, as it can be stopped if the upper bound is reached without a positive answer. If there is no such upper 
bound, it is indeed a semi-decision procedure that finds an implementation if one exists, but runs forever otherwise.

1.1. Our contributions

As mentioned above, one can add parameters to LTL for free: the complexity of the model checking problem and of 
solving infinite games does not increase. This raises the question whether this is also true for distributed realizability of 
parametric temporal logics. For synchronous systems, we can answer this question affirmatively. For every class of archi-
tectures with decidable LTL realizability, the PROMPT–LTL realizability problem is decidable, too. To show this, we apply 
the alternating color technique [6] to reduce the distributed realizability problem of PROMPT–LTL to the one of LTL: one 
can again add parameterized operators to LTL for free. To prove this result, we add a new process whose only task it is to 
determine a coloring with the fresh proposition. By ensuring that the new process does not introduce an information fork 
we obtain decidability for the same class of architectures as for LTL.
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