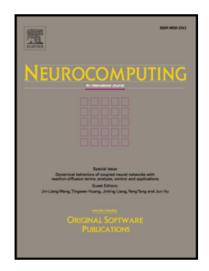
Accepted Manuscript

An Adaptive Mini-Batch Stochastic Gradient Method for AUC Maximization

Fan Cheng, Xia Zhang, Chuang Zhang, Jianfeng Qiu, Lei Zhang


PII: \$0925-2312(18)30991-3

DOI: https://doi.org/10.1016/j.neucom.2018.08.041

Reference: NEUCOM 19889

To appear in: Neurocomputing

Received date: 28 November 2017 Revised date: 10 May 2018 Accepted date: 15 August 2018

Please cite this article as: Fan Cheng, Xia Zhang, Chuang Zhang, Jianfeng Qiu, Lei Zhang, An Adaptive Mini-Batch Stochastic Gradient Method for AUC Maximization, *Neurocomputing* (2018), doi: https://doi.org/10.1016/j.neucom.2018.08.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

An Adaptive Mini-Batch Stochastic Gradient Method for AUC Maximization

Fan Cheng^{a,b}, Xia Zhang^b, Chuang Zhang^b, Jianfeng Qiu^{a,b}, Lei Zhang^{a,b,*}

^aKey Laboratory of Intelligent Computing Signal Processing of Ministry of Education, Anhui University, China
^bSchool of Computer Science and Technology, Anhui University, China

Abstract

Due to the wide applications in imbalanced learning, directly optimizing AUC has gained increasing interest in recent years. Compared with traditional batch learning methods, which often suffer from poor scalability, it is more challenging to design the efficient AUC maximizing algorithm for large-scale data set, especially when dimension of data is also high. To address the issue, in this paper, an adaptive stochastic gradient method for AUC maximization, termed AMAUC, is proposed. Specifically, the algorithm adopts the framework of mini-batch, and uses projection gradient method for the inner optimization. To further improve the performance, an adaptive learning rate updating strategy is also suggested, where the second order gradient information is utilized to provide the feature-wise updating. Empirical studies on the benchmark and high-dimensional data sets with large scale demonstrate the efficiency and effectiveness of the proposed AMAUC.

Keywords: AUC Maximization; Mini-batch; Adaptive Updating; High Dimension; Stochastic Learning;

1. Introduction

Area Under the ROC Curve (AUC), as an important metric for measuring the classification performance under imbalanced situation, has attracted many research focuses in the last two decades. Recently, much attention has also been paid on designing the classifiers to directly optimize AUC [1, 2, 3, 4, 5], which can be applied to a large number of tasks, such as information retrieval [6], medical diagnosis [7, 8] and biometric recognition [9, 10] etc. In spite of the promising performance of these AUC maximization algorithms, however, most of them are proposed for batch learning, which means when the data set is of large size, these algorithms are not feasible, since in each iteration, the gradients of all data are calculated, which results in high computational demands.

A natural way to tackle the problem is to develop stochastic (online) AUC maximization

^{*}Corresponding author.

Email addresses: chengfan@mail.ustc.edu.cn (Fan Cheng), ahu_edu_zx@163.com (Xia Zhang), chuang5230@foxmail.com (Chuang Zhang), qiujianf@ahu.edu.cn (Jianfeng Qiu), zl@ahu.edu.cn (Jei Zhang)

Download English Version:

https://daneshyari.com/en/article/11021148

Download Persian Version:

https://daneshyari.com/article/11021148

<u>Daneshyari.com</u>