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a b s t r a c t 

Indefinite similarity measures can be frequently found in bio-informatics by means of alignment scores, 

but are also common in other fields like shape measures in image retrieval. Lacking an underlying vec- 

tor space, the data are given as pairwise similarities only. The few algorithms available for such data do 

not scale to larger datasets. Focusing on probabilistic batch classifiers, the Indefinite Kernel Fisher Dis- 

criminant (iKFD) and the Probabilistic Classification Vector Machine (PCVM) are both effective algorithms 

for this type of data but, with cubic complexity. Here we propose an extension of iKFD and PCVM such 

that linear runtime and memory complexity is achieved for low rank indefinite kernels. Employing the 

Nyström approximation for indefinite kernels, we also propose a new almost parameter free approach to 

identify the landmarks, restricted to a supervised learning problem. Evaluations at several larger similarity 

data from various domains show that the proposed methods provides similar generalization capabilities 

while being easier to parametrize and substantially faster for large scale data. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Domain specific proximity measures, like alignment scores in 

bioinformatics [1] , the modified Hausdorff-distance for structural 

pattern recognition [2] , shape retrieval measures like the inner 

distance [3] and many other ones generate non-metric or indefi- 

nite similarities or dissimilarities. Classical learning algorithms like 

kernel machines assume Euclidean metric properties in the under- 

lying data space and may not be applicable for this type of data. 

Only few machine learning methods have been proposed 

for non-metric proximity data, like the indefinite kernel Fisher 

discriminant (iKFD) [4,5] , the probabilistic classification vector 

machine (PCVM) [6] or the indefinite Support Vector Machine 

(iSVM) in different formulations [7–9] . For the PCVM the provided 

kernel evaluations are considered only as basis functions and no 

Mercer conditions are implied. In contrast to the iKFD the PCVM 

is a sparse probabilistic kernel classifier pruning unused basis 

functions during training, applicable to arbitrary positive definite 
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and indefinite kernel matrices. A recent review about learning 

with indefinite proximities can be found in [10] . 

While being very efficient these methods do not scale to larger 

datasets with in general cubic complexity. In [11,12] the authors 

proposed a few Nyström based (see e.g. [13] ) approximation tech- 

niques to improve the scalability of the PCVM for low rank matri- 

ces. The suggested techniques use the Nyström approximation in 

a non-trivial way to provide exact eigenvalue estimations also for 

indefinite kernel matrices. This approach is very generic and can be 

applied in different algorithms. In this contribution we further ex- 

tend our previous work and not only derive a low rank approxima- 

tion of the indefinite kernel Fisher discriminant, but also address 

the landmark selection from a novel view point. The obtained 

Ny-iKFD approach is linear in runtime and memory consumption, 

for low rank matrices. The formulation is exact if the rank of the 

matrix equals the number of independent landmarks points. The 

selection of the landmarks of the Nyström approximation is a 

critical point addressed in previous work (see e.g. [14–16] ). Most 

recently leverage scores [17] have been found very promising, 

but with quadratic costs. In general these strategies use the full 

positive semi-definite (psd) kernel matrix or expect that the 

kernel is of some standard class like an RBF kernel. In each case 

the approaches presented so far are costly in runtime and memory 

consumption as can be seen in the subsequent experiments. 
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Additionally, former approaches for landmark selection aim on 

generic matrix reconstructions of positive semi definite (psd) ker- 

nels. We propose a restricted reconstruction of the psd or non-psd 

kernel matrix with respect to a supervised learning scenario only. 

We no longer expect to obtain an accurate kernel reconstruction 

from the approximated matrix (e.g. by using the Frobenius norm) 

but are pleased if the approximated matrix preserves the class 

boundaries in the data space. 

In [12] the authors derived methods to approximate large 

proximity matrices by means of the Nyström approximation and 

conversion rules between similarities and dissimilarities. These 

techniques have been applied in [11] and [18] in a proof of con- 

cept setting, to obtain approximate models for the Probabilistic 

Classification Vector Machine and the Indefinite Fisher Kernel 

Discriminant analysis using a random landmark selection scheme. 

This work is substantially extended and detailed in this article 

with a specific focus on indefinite kernels, only. A novel landmark 

selection scheme is proposed. Based on this new landmark selec- 

tion scheme we provide detailed new experimental results and 

compare to alternative landmark selection approaches. The paper 

provides the following improvements over the current state of the 

art: (1) A linear costs approximation scheme for the Indefinite 

Kernel Fisher Discriminant (iKFD) and the probabilistic classifi- 

cation vector machine (PCVM) is provided. (2) A new supervised 

landmark selection scheme is proposed which can be also applied 

to indefinite input kernels to obtain a Nystroem approximation of 

the given indefinite kernel. (3) A variety of experimental results 

is provided showing the efficiency of the proposed approach and 

linked to related work. 

Structure of the paper: First we give some basic notations 

necessary in the subsequent derivations. Then we review iKFD 

and PCVM as well as some approximation concepts proposed by 

the authors in [11] which are based on the well known Nyström 

approximation. Subsequently, we consider the landmark selection 

problem in more detail and show empirically results motivating a 

supervised selection strategy. Finally we detail the reformulation 

of iKFD and PCVM based on the introduced concepts and show 

the efficiency in comparison to Ny-PCVM and Ny-iKFD for various 

indefinite proximity benchmark data sets. 

2. Methods 

2.1. Notation and basic concepts 

Consider a collection of N objects x i , i = 1 , 2 , . . . , N, in some 

input space X . Given a similarity function or inner product on 

X , corresponding to a metric, one can construct a proper Mercer 

kernel acting on pairs of points from X . For example, if X is 

a finite dimensional vector space, a classical similarity function 

is the Euclidean inner product (corresponding to the Euclidean 

distance) - a core component of various kernel functions such as 

the famous radial basis function (RBF) kernel. Now, let φ : X �→ H
be a mapping of patterns from X to a Hilbert space H equipped 

with the inner product 〈·, ·〉 H 

. The transformation φ is in general 

a non-linear mapping to a high-dimensional space H and may 

in general not be given in an explicit form. Instead, a kernel 

function k : X × X �→ R is given which encodes the inner product 

in H. The kernel k is a positive (semi) definite function such that 

k (x , x ′ ) = 〈 φ(x ) , φ(x ′ ) 〉 H 

, for any x , x ′ ∈ X . The matrix K i, j := k ( x i , 

x j ) is an N × N kernel (Gram) matrix derived from the training data. 

The motivation for such an embedding comes with the hope that 

the non-linear transformation of input data into higher dimen- 

sional H allows for using linear techniques in H. Kernelized meth- 

ods process the embedded data points in a feature space utilizing 

only the inner products 〈·, ·〉 H 

(kernel trick) [19] , without the need 

to explicitly calculate φ. The kernel function can be very generic. 

Most prominent are the linear kernel with k (x , x ′ ) = 〈 φ(x ) , φ( x ′ ) 〉 
where 〈 φ( x ), φ( x ′ ) 〉 is the Euclidean inner product and φ identity 

mapping, or the RBF kernel k (x , x ′ ) = exp (−‖ x −x ′ ‖ 2 
2 σ 2 ) , with σ > 0 

as a free scale parameter. In any case, it is always assumed that the 

kernel function k ( x, x ′ ) is positive semi definite (psd). This assump- 

tion is however not always fulfilled, and the underlying similarity 

measure may not be metric and hence not lead to a Mercer 

kernel. Examples can be easily found in domain specific simi- 

larity measures as mentioned before and detailed later on. Such 

similarity measures imply indefinite kernels, preventing standard 

“kernel-trick” methods developed for Mercer kernels to be applied. 

For a matrix A , A 

−1 denotes the inverse of A . We will still 

use this notation even when A is non-regular. In that case A 

−1 

will represent an inverse obtained through an Singular Value 

Decomposition (SVD) - based regularization. 

In what follows we will review some basic concepts and 

approaches related to such non-metric situations. 

2.2. Krein and Pseudo-Euclidean spaces 

A Krein space is an indefinite inner product space endowed 

with a Hilbertian topology. 

Definition 1 (Inner products and inner product space) . Let Q be a 

real vector space. An inner product space with an indefinite inner 

product 〈·, ·〉 Q on Q is a bi-linear form where all f, g, h ∈ Q and 

α ∈ R obey the following conditions: 

• Symmetry: 〈 f, g〉 Q = 〈 g, f 〉 Q 
• linearity: 〈 α f + g, h 〉 Q = α〈 f, h 〉 Q + 〈 g, h 〉 Q ; 
• 〈 f, g〉 Q = 0 ∀ g ∈ Q implies f = 0 

An inner product is positive definite if ∀ f ∈ Q , 〈 f, f 〉 Q ≥ 0 , 

negative definite if ∀ f ∈ Q , 〈 f, f 〉 Q ≤ 0 , otherwise it is indefinite. 

A vector space Q with inner product 〈·, ·〉 Q is called an inner 

product space. 

Definition 2 (Krein space and pseudo-Euclidean space) . An inner 

product space (Q , 〈·, ·〉 Q ) is a Krein space if we have two Hilbert 

spaces H + and H − spanning Q such that ∀ f ∈ Q we have f = f + + 

f − with f + ∈ H + and f − ∈ H − and ∀ f, g ∈ Q , 〈 f, g〉 Q = 〈 f + , g + 〉 H + −〈 f −, g −〉 H − . A finite-dimensional Krein-space is a so called pseudo- 

Euclidean space (pE). 

Indefinite kernels are typically found through domain specific 

non-metric similarity functions (such as alignment functions used 

in biology [1] ), specific kernel functions (e.g. the Manhattan kernel 

k (x , x ′ ) = −|| x − x ′ || 1 , tangent distance kernel [20] ), or divergence 

measures plugged into standard kernel functions [21] . Another 

source of non-psd kernels are noise artifacts on standard kernel 

functions [7] . 

In such spaces vectors can have negative squared “norm”, 

negative squared “distances” and the concept of orthogonality 

is different from the usual Euclidean case. In the subsequent 

experiments our input data are in general given by a symmetric 

indefinite kernel matrix K . We will use the symbol K to denote 

kernel matrices, whether psd or not. It will be clear from the 

context if the underlying space is a Hilbert or a Krein space. We 

use the symbol S for (symmetric) similarity matrices and D for a 

symmetric dissimilarity matrix. 

In practical applications it may also happen that the given 

data are represented by non-metric dissimilarities. A prominent 

example is the dynamic timewarping score matrix which can 

be considered as a dissimilarity matrix of pairwise sequence 

alignments. Given a symmetric dissimilarity matrix D with zero 
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