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A B S T R A C T

We propose to apply artificial intelligence approaches in a warm-starting procedure to accelerate active set
methods that are used to solve strictly convex quadratic programs in the context of embedded model predictive
control (MPC). The proposed warm-starting is based on machine learning where a good initialization of the
active set method is learned from training data. Two approaches to generate the training data set are discussed,
one based on gridding the feasibility domain, and one based on closed-loop simulations with typical initial
conditions. The training data are then processed by machine learning-based classification algorithms that yield
a good estimate of the initial active set for the iterative active set algorithm. By means of extensive case
studies we demonstrate that the proposed approach is superior to existing warm-starting procedures in that
it considerably reduces the number of active set iterations, thus allowing embedded MPC to be implemented
using less computational effort.

1. Introduction

Model Predictive Control (MPC) is nowadays a de facto standard
control methodology when controlling multivariable systems where
satisfaction of constraints and optimization of the control performance
are required (Maciejowski, 2002; Rossiter, 2003; Camacho and Bordons,
2007). Most of MPC in practice is formulated and solved as convex
quadratic programs (QP), parameterized in the initial state measure-
ment. When controlling systems with fast dynamics, it is vital to be
able to solve such QPs fast enough. This, however, becomes challenging
when constraints of the implementation hardware, such as the available
computational power and memory storage, are taken into account,
especially when targeting simple hardware such as microcontrollers
(Zometa et al., 2013), field programmable gate arrays (Ling et al., 2008),
or programmable logic controllers (Huyck et al., 2012).

Various avenues to providing the solution to a given MPC-based QP
with minimal resources (computation and memory) can be pursued. One
option is to solve the QP off-line for all possible values of the initial
condition using parametric programming (Bemporad et al., 2002). Such
techniques, however, are limited to problems of small size, say, for a
short prediction horizon, up to 10 states and up to 4 control inputs.
For problems of bigger size, one usually solves the QP on-line. To do
so, a plethora of methods have been suggested, such as active set
methods (Nocedal and Wright, 2006; Wills and Ninness, 2010; Ferreau
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et al., 2008), interior point approaches (Rao et al., 1998), fast gradient
procedures (Richter et al., 2012; Kögel and Findeisen, 2011), gradient
projection algorithms (Patrinos and Bemporad, 2014), splitting methods
(O’Donoghue et al., 2013; Stathopoulos et al., 2014), and tailored MPC
algorithms (Liu and Kong, 2014), to name just a few. Among these,
the active set methods are frequently used due to their simplicity and
easiness of implementation in the embedded framework (Cimini and
Bemporad, 2017).

In this paper, we focus on active set methods (ASM). There, the
working active set  and the primal/dual optimizers are iteratively
updated until the global optimum of the convex QP is found. The
dominant speed factors of ASM are the number of iterations and the
cost of linear algebra in each iteration, with the former having larger
impact on the overall performance (Herceg et al., 2015).

As shown in Herceg et al. (2015), the number of ASM iterations
can be significantly decreased if the iterations are warm started from
some known initial active set 0 and the associated primal/dual feasible
solution. In Ferreau et al. (2008, 2014), the ASM is initialized from the
active set ⋆(𝑡 − 1) obtained at the previous time instant 𝑡 − 1. This,
however, does not take into account the current state measurement
and therefore works well only when the active sets do not change
much in time. An improved warm starting procedure, which takes into
account the information about the current state 𝑥(𝑡), was proposed in
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Otta et al. (2015). There, LQR-based warm starting is used in conjunc-
tion with projections onto constraints. Therefore the approach is only
suitable, from a practical point of view, if the constraint set is simple,
such as a hyperbox. Finally, in Zeilinger et al. (2011) the authors have
proposed to devise a state-dependent warm start 0(𝑥(𝑡)) by solving,
off-line, a parametric program. Although substantial reduction in the
number of iterations could be achieved, the procedure is limited to
systems with a modest number of states, say, below ten.

In this paper we propose to apply machine learning (ML) to accel-
erate primal active set methods used to solve QP-based MPC problems.
Specifically, we show how to construct a state-dependent warm start
procedure that yields the initial active set 0 as a function of the current
state 𝑥(𝑡). Specifically, the policy 0(𝑥(𝑡)) is learned from training data
collected off-line. We show that by resorting to standard ML-based
classification algorithms, such as classification trees (Breiman et al.,
1984) and 𝑘-nearest neighbors (Dasarathy, 1991), the learned policy is
simple enough as to enable a fast and cheap embedded implementation,
and performs better compared to the feedback warm-starting of Ferreau
et al. (2008). Finally, the procedure is applicable to QP-based MPC prob-
lems where the constraint set is an arbitrary polyhedron, thus allowing,
among others, to include terminal set constraints. In fact, application of
machine learning procedures to solve optimization problems is not new.
Research presented in Nazemi (2014) and Elsayed et al. (2014) use the
neural networks to find optimal solution to the strictly convex QPs.

Note that the proposed machine-learning based acceleration of
active set methods does not replace the control algorithm, it merely
complements it. Specifically, as shown in Section 5, ML allows the ASM
to arrive at the optimal solution using a fewer number of iterations
compared to conventional methods, such as the one of Ferreau et al.
(2008). Since the primal active set method guarantees that the optimal
solution is found even if the initialization is not correct, the proposed
procedure maintains guarantees of closed-loop stability and constraint
satisfaction.

2. Preliminaries

2.1. QP-based MPC

For linear systems

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), (1)

subject to constraints 𝑥 ∈  , 𝑢 ∈  with  ⊆ R𝑛,  ⊆ R𝑚, the context
of this paper revolves around solving the following MPC problem:

min
𝑢0 ,…,𝑢𝑁−1

𝑥⊺𝑁𝑄f𝑥𝑁 +
𝑁−1
∑

𝑘=0

(

𝑥⊺𝑘𝑄x𝑥𝑘 + 𝑢⊺𝑘𝑄u𝑢𝑘
)

(2a)

s.t. 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘, 𝑘 = 0,… , 𝑁 − 1, (2b)
(𝑥𝑘, 𝑢𝑘) ∈  × , 𝑘 = 0,… , 𝑁 − 1, (2c)
𝑥𝑁 ∈ f, (2d)

where 𝑄f ⪰ 0, 𝑄x ⪰ 0, 𝑄u ≻ 0 are penalty matrices, 𝑁 ∈ N < ∞
is a finite prediction horizon, 𝐴, 𝐵 are system matrices, and  ,  , f
are polyhedra that contain the origin in their respective interiors, and
f ⊂  . It is well known, see, e.g., Mayne et al. (2000) that (2) can be
converted into a parametric quadratic program

min
𝑈

1∕2𝑈 ⊺𝐻𝑈 + 𝜃⊺𝐹𝑈 (3a)

s.t. 𝐺𝑈 ≤ 𝐸𝜃 +𝑤, (3b)

with 𝜃 = 𝑥0 being the parameter and 𝑈 = [𝑢⊺0,… , 𝑢⊺𝑁−1]
⊺ representing

the optimization variables. The vectors/matrices 𝐻 , 𝐹 , 𝐺, 𝐸, 𝑤 can
be obtained from (2) using straightforward algebraic manipulations.
We remark that 𝐻 ≻ 0, thus the Hessian is invertible, since 𝑄f ⪰ 0,
𝑄x ⪰ 0, 𝑄u ≻ 0 is assumed. The optimal open-loop sequence of control
actions, i.e., 𝑈⋆, can then be obtained by solving (3) for a particular
initial condition 𝜃 = 𝑥(𝑡). MPC is then traditionally implemented in the

receding horizon fashion where only the first element of 𝑈⋆, i.e., 𝑢⋆0
is implemented to the controlled system and the whole procedure is
repeated at the subsequent time instant for a new value of the initial
condition 𝜃 = 𝑥(𝑡).

2.2. Primal active set method for strictly convex QPs

The primal active set method (ASM) (Fletcher, 2013) is an iterative
procedure for finding the minimizer 𝑈⋆ to (3) for a fixed value of the
parameter 𝜃. At each iteration, the ASM searches for a vector 𝛥 along
which the objective function (3a) decreases. To tackle constraints, the
procedure also iteratively updates the index set  of constraints that are
active at the current iterate. Specifically, at each iteration the active set
method solves the equality-constrained QP (EQP) of the form

min
𝛥

1
2
(

𝑈 + 𝛥
)⊺𝐻

(

𝑈 + 𝛥
)

+ 𝜃⊺𝐹
(

𝑈 + 𝛥
)

(4a)

s.t. 𝐺
(

𝑈 + 𝛥
)

= 𝐸𝜃 +𝑤, (4b)

where 𝐺 consists of the rows of 𝐺 indexed by the set  ⊆ {1,… , 𝑐}
where 𝑐 is the number of constraints in (3b). In (4), 𝑈 is considered
fixed and feasible, i.e., 𝐺𝑈 = 𝐸𝜃 +𝑤, and therefore 𝐺𝛥 = 0 needs
to hold to retain feasibility. The improving direction 𝛥 for (4) can be
solved from the Karush–Kuhn–Tucker system
[

𝛥
𝜆

]

=
[

𝐻 𝐺⊺


𝐺 0

]−1 [
−𝐻𝑈 − 𝐹 ⊺𝜃

0

]

, (5)

where 𝜆 is the vector of Lagrange multipliers. If1 ‖𝛥‖ = 0 and 𝜆𝑖 ≥ 0 for
all 𝑖 ∈ , 𝑈 is the optimal solution and the iterations terminate. If, on
the other hand, some Lagrange multipliers are negative, one constraint
is removed from , typically the one corresponding to the smallest
Lagrange multiplier, i.e.,  =  ⧵ {𝑖⋆} with

𝑖⋆ = argmin
𝑖∈

𝜆𝑖, (6)

and the procedure continues with the next iteration. If the improving
direction 𝛥 is non-zero, the current iterate 𝑈 is refined by 𝑈 = 𝑈 + 𝛼𝛥.
Here, the step size 𝛼 is given by 𝛼 = min{1, 𝛽𝑗}, where 𝛽𝑗 are defined,
for all 𝑗 ∉  for which 𝐺𝑗𝛥 > 0, as

𝛽𝑗 =
𝐸𝑗𝜃 +𝑤𝑗 − 𝐺𝑗𝑈

𝐺𝑗𝛥
, (7)

where 𝐺𝑗 is the 𝑗th row of the matrix. If 𝛼 < 1, then some previously
inactive constraint becomes active when updating 𝑈 along the direction
𝛥. Among all such constraints, one typically (Fletcher, 2013) picks the
one that is activated first, i.e., 𝑗⋆ = argmin𝑗𝛽𝑗 , followed by adding 𝑗⋆ to
the active set, i.e.,  = ∪{𝑗⋆}. The complete procedure is reported as
Algorithm 1.

Remark 2.1. Algorithm 1 takes the initial active set 0 and the initial
primal solution 𝑈0 as its inputs. If no prior information is available, one
can always choose 0 = ∅ and 𝑈0 = 0, provided 0 ∈  . If 0 is given as
a non-empty set, 𝑈0 can be computed by 𝑈0 = 𝐺†

0
(𝐸0

𝜃 +𝑤0
) where

† denotes the left Moore–Penrose inverse. □

Remark 2.2. As pointed out in Fletcher (2013, Chapter 10.3), Algo-
rithm 1 converges to the primal optimal solution 𝑈⋆ regardless of the
choice of the initial active set 0, provided it is chosen such that the
matrix 𝐺0

is of full row rank. Naturally, each choice of 0 leads to a
different sequence of iterations. □

3. Problem statement

The number of iterations the ASM takes to converge to the optimal
solution 𝑈⋆(𝑡) for a given initial condition 𝜃 = 𝑥(𝑡) at time instant 𝑡

1 In the floating point environment, it is advised to replace the condition
‖𝛥‖ = 0 in Algorithm 1 by ‖𝛥‖ ≤ 𝜖 for some small positive value of 𝜖, typically
equal to the machine precision.
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