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A B S T R A C T

The use of robotic mobile sensors for environmental monitoring applications has gained increasing attention
in recent years. In this context, a common application is to determine the region of space where the analyzed
phenomena is above or below a given threshold level — this problem is known as level set estimation. One example
is the analysis of water in a lake, where the operators might want to determine where the dissolved oxygen level
is above a critical threshold value. Recent research proposes to model the spatial phenomena of interest using
Gaussian Processes, and then use an informative path planning procedure to determine where to gather data. In
this paper, in contrast to previous works, we consider the case where a mobile platform with low computational
power can continuously acquire measurements with a negligible energy cost. This scenario imposes a change in
the perspective, since now efficiency is achieved by reducing the distance traveled by the mobile platform and
the computation required by this path selection process. In this paper we propose two active learning algorithms
aimed at facing this issue: specifically, (i) SBOLSE casts informative path planning into an orienteering problem
and (ii) PULSE that exploits a less accurate but computationally faster path selection procedure. Evaluation of our
algorithms, both on a real world and a synthetic dataset show that our approaches can compute informative paths
that achieve a high quality classification, while significantly reducing the travel distance and the computation
time.

1. Introduction

Environmental monitoring encompasses the analysis and actions
required to characterize and monitor the quality of the environment.
This includes the collection of information from the environment and
the generation of a model that represents the specific phenomena of
interest (La and Sheng, 2013; La et al., 2015; Garces and Sbarbaro,
2011). Computational methods are often used to facilitate environmen-
tal monitoring, for example Cheng et al. (2003) propose and expert
system for the analysis of the water quality in a city. An other example
is the monitoring of a body of water (e.g., lakes, rivers, coastal areas and
so forth). In this case the analysis focuses on the generation of a model
that describes how crucial parameters such as the presence of harmful
algal blooms (Muttil and Chau, 2007) or the dissolved oxygen (DO) vary
across the environment. Most environmental monitoring applications
require the collection of large datasets, frequently in harsh conditions.
In recent years the use of unmanned vehicles for monitoring spatial
phenomena has gained increasing attention (Cao et al., 2013). The mon-
itoring operation of a lake for example, could be performed through the
use of autonomous surface vessels (ASVs), or by a heterogeneous system
composed of marine, terrestrial and airborne platforms (Dunbabin and
Marques, 2012).
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When deploying unmanned vehicles for environmental monitoring,
the data collection process must consider limited resources such as time,
energy and computation power that constrain the operation range of
the platforms. The goal is to use a mobile platform with low on-board
computation power, such as the one showed in Fig. 1, to generate an
accurate model of the environmental phenomena of interest. In this
context (Hollinger and Sukhatme, 2014), it is important to select an
informative path for the mobile agents to acquire as much information
as possible while reducing the total traveled distance and hence the
time and energy required to perform the analysis. As a further issue,
autonomous mobile systems are usually equipped with low computa-
tional capacity. Therefore, if the path selection procedure is performed
on-board during the monitoring operation, it is crucial to reduce as much
as possible the computational complexity of the algorithms.

The literature offers different path selection strategies (Singh et al.,
2009). Traditional nonadaptive (offline) methods generate the path be-
fore any observations are made. In contrast, adaptive (online) methods
plan the path based on the previously collected data (Batalin et al.,
2004; Rahimi et al., 2004; Singh et al., 2006). These adaptive techniques
incrementally generate the model of the environmental phenomena of
interest during the data collection phase and focus the information
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Fig. 1. Mobile platform that we used: Platypus Lutra equipped with pH, Dissolved
oxygen, temperature and electrical conductivity sensors. The computation is on board
and performed by an Arduino Due and a smartphone.

collection process on specific regions of the environment where the
phenomena exhibits critical values. For example, in a lake such a region
could encompass the locations where the water’s dissolved oxygen level
is considered harmful for the environment. Another example could be
the detection of contours of biological or chemical plumes (Pang and
Farrell, 2006). From a general perspective, this can be seen as the
problem of deciding if a quantity of interest is above or below a pre-
specified threshold. This problem is typically referred to as the ‘‘level
set estimation problem’’ in the literature (Hitz et al., 2014).

Previous work on the level set estimation problem such as the one
proposed by Dantu and Sukhatme (2007) focused on a network com-
posed by a combination of static and mobile sensors. In the manuscript
of Gotovos et al. (2013) the proposed LSE algorithm uses Gaussian
Processes (GPs) to identify sampling points that reduce uncertainty
around a given threshold level of the modeled function. Even if the
authors obtain a high quality classification with respect to threshold
level (above or below) for the regions of the space using a low number
of sampled locations, in their contribution the main algorithm does not
explicitly take into account the path between the sampling locations.
To partially consider this aspect, the authors propose a batch variant
where a set of new sampling locations is selected in a batch such that it
is possible to compute an efficient path between these points.

Hitz et al. (2014) describe a method designed for ASVs equipped with
a probe that allows an aquatic sensor to be lowered into the water. Their
LSE-DP algorithm, built on the LSE algorithm from Gotovos et al. (2013),
uses a dynamic programming approach with a receding horizon to plan a
feasible sampling path for the probe within a predefined vertical transect
plane.

In a more recent work (Hitz et al., 2017) introduce an evolutionary
strategy to optimize a path in continuous space. Specifically, authors
parametrize a path as a cardinal B-spline with 𝑛 control points and
propose a re-planning scheme to adapt the planned paths according to
the measurements obtained from the environment.

This paper is inserted in the aforementioned scenario, and aims at
facing the problem of level set estimation by using Active Learning
(AL) techniques with sequential measurements. In a general discussion
on active learning Liu et al. (2009) present the use of active learning
techniques on spatial data where the cost is proportional to the distance
traveled, ignoring the intermediate points along the path. In contrast,
we have an additional objective, where we aim also at determining ef-
ficient paths for mobile sensors (instead of determining single sampling
locations) so to optimize the data collection process. Specifically our
techniques are motivated by the recent development of low-cost, small
mobile platforms that can perform continuous-sampling in various body
of waters (lakes, rivers and coastal areas). For example, consider the
autonomous surface vessel shown in Fig. 1. This platform is small (about
1 meter long and 50 cm wide) and it is equipped with various probes
that can measure parameters such as pH, dissolved oxygen, temperature,
and electrical conductivity with sampling rate between 1 and 10 Hz. In
this setting the cost in terms of energy to perform a single measurement
is negligible, and the most crucial issue for the data collection process

is the energy consumed to move the vessel. In fact, to meet the payload
constraint of this platform, batteries must have a limited capacity that
results in constraints on total path length. As a further constraint, we
also want to take into account the low computational power of the
hardware of this platform (composed of an Arduino Due board and
an Android smartphone), which motivates the derivation of algorithms
with reduced computational complexity.

We introduce a novel algorithm (SBOLSE) that makes use of an
orienteering problem formulation for the level set estimation. SBOLSE
aims to obtain a high quality classification of the analyzed regions while
optimizing the total path length required by the mobile agent, rather
than the number of samples extracted during the executions (which is an
important criteria for previous works in the LSE domain). Moreover, to
match the low computation power of mobile platforms, we introduce the
use of several heuristics which significantly reduces the time required
by the algorithm for the selection of an informative path. Finally, we
also introduce a novel greedy path selection procedure (PULSE) which
represents a baseline greedy strategy for comparisons.

Specifically, the main contributions1 of this paper to the state of the
art are:

• We propose a novel algorithm called SBOLSE, that uses an orien-
teering formulation to solve the level set estimation problem. The
algorithm is specifically designed for continuous-sampling mobile
sensors.

• We propose four different heuristics with the aim to reduce the
computation time required to determine an efficient path with the
SBOLSE algorithm.

• We propose a novel greedy algorithm called PULSE for selecting
measurement paths that exploits a less accurate but computation-
ally faster path selection procedure. PULSE only accounts for the
presence of information, not the magnitude of information gain.
It is used as a baseline strategy for comparisons in the continuous-
sampling setting.

• We test our algorithms on a real world dataset of water pH level
and on synthetic datasets extracted from CO2 maps. We show that
our approaches are better in terms of computation time required
and path length, while achieving a high quality classification when
compared to the state of the art techniques for level set estimation.

Notice that, the SBOLSE algorithm is based on several methodologies
derived from different areas of computer science: LSE from information
gathering, skeletonization from image processing, orienteering from
graph theory and clustering. Our work shows that a clever combination
of such methodologies results in an effective approach for addressing
level set estimation with continuous measurement sensors.

Although our techniques has been introduced for environmental
monitoring operations, they can be generalized to different applica-
tions where mobile sensors are used to model the information of the
environment. Specifically, applications where a mobile sensors has to
take measurements from the environment with a battery constraint and
hence it is required to compute an efficient path. Examples can span
across different context such as search and rescue operations (Scherer
et al., 2015), precision agriculture (Tokekar et al., 2016; Popovic et al.,
2016), sea-floor target localization (McMahon et al., 2017) and radio
signal source localization (Shahidian and Soltanizadeh, 2016).

2. Problem statement and background

2.1. Problem statement

Following Gotovos et al. (2013), Bottarelli et al. (2016) and Bottarelli
et al. (2017), we formalize the level set estimation as an active learning

1 Aspects of this work have already been presented in the conference
papers (Bottarelli et al., 2016) and (Bottarelli et al., 2017).
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