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A B S T R A C T

Vibration-based cable tension estimation methods demand complex computations especially when usage of
comprehensive cable models is required. Avoiding mathematical calculations, this paper proposes a simple novel
framework to estimate the cable tension based on Artificial Neural Networks (ANNs). Employing a compre-
hensive cable model, a set of data including cable length, cable mass per unit length, cable axial stiffness, cable
bending stiffness, cable tension and the corresponding cable natural frequencies is generated for training, va-
lidation, and testing of the ANNs. The acquired ANNs are then used to estimate the cable tensions in new
Ironton-Russell Bridge and the results are compared against the cable tensions directly measured by lift-off test.
It will be shown that for new Ironton-Russell Bridge, using cable length, cable mass per unit length, cable axial
stiffness, and first two cable natural frequencies as input features to ANNs, the cable tensions can be accurately
estimated.

1. Introduction

Consistency of cable tension over time is considered as one of the
health indicators for both cables and superstructure of cable structures
[1–3]. Cable tension can be measured directly [4] or it can be estimated
by measuring different parameters of the cable such as stress [5], strain
[6], or natural frequencies [7]. The methods that use cable natural
frequencies to estimate the cable tension are called vibration-based
tension estimation methods [8–11]. Vibration-based tension estimation
methods have been extensively employed to estimate the cable tension
in many cable structures around the world [12–14]. In a vibration-
based cable tension estimation method, a cable model is usually used to
create an error function representative of the difference between the
measured natural frequencies of the cable and the analytical natural

frequencies (coming from the cable model). Minimizing the error
function, the cable tension can be identified [15]. Kim and Park also
suggested a different approach to estimate the cable tension using cable
natural frequencies [16]. They employed a frequency-based sensitivity-
updating algorithm to identify the horizontal component of cable ten-
sion, cable bending stiffness, and cable axial stiffness in a finite element
cable model. Suggesting adaptive sparse time-frequency analysis
method to identify the time-varying cable natural frequencies using
cable acceleration, Bao et al. allowed the vibration-based cable tension
estimation methods to identify the time-varying cable tension [17]. In
this paper, a novel vibration-based approach based on ANNs is pre-
sented to estimate the cable tension in cable structures avoiding com-
plex calculations. Using normalized strain and displacement along the
cable, ANN has already been employed to estimate the cable tension in
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bridges [18]. However, the method requires the measurement of strain
and displacement values at several points along the cable which is ex-
perimentally expensive. An easily measurable set of cable properties
including cable length, cable mass per unit length, cable axial stiffness,
and in-plane natural frequencies of cable are suggested in this paper to
train ANNs for estimating the cable tension in cable structures.

First, the unified finite difference cable model [19] is reviewed and
used to generate a set of 1000 data points of cable length, cable mass
per unit length, cable axial stiffness, cable bending stiffness, cable
tension and the corresponding in-plane natural frequencies of cable.
Second, the acquired dataset is employed to train, validate and test the
ANNs with a single hidden layer that take cable properties as input
features and output the cable tension force. Finally, the trained ANNs
were used to estimate the cable tensions in new Ironton-Russell Bridge
(a newly built cable-stayed bridge between Ironton, Ohio and Russell,
Kentucky) and the results were compared against the tension forces
measured by Lift-off test.

2. Finite difference cable model

Knowing cable length L, cable mass per unit length m, and cable
tension force H, taut string model is the simplest cable model that can
be used to estimate the cable natural frequencies [20]:

=f n
L

H
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where fn is the nth natural frequency of the cable in Hz. Employing the
vibration equation of an axially tensioned beam is a common approach
for considering the bending stiffness of the cable [8,9]. Irvine and
Caughey [21] considered the sag and extensibility of the cable for the
first time. They introduced the dimensionless parameter λ2 (sag-ex-
tensibility parameter) as:
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where d is the cable sag, EA is the axial stiffness of the cable, and Le is
calculated as,
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Assuming a parabolic static profile for the cable, the non-dimen-
sional parameter λ2 can be written as below [22]:
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Supposing that the angle of inclination of cable cord relative to the
horizontal is defined as θ (See Fig. 6), for cables with small sag, the in-
plane natural frequencies of cable in Hz can also be calculated using
Equation (5) [23]:
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where κn is calculated as below:
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and ρ is density of the cable. Introducing the dimensionless parameter ζ
(bending stiffness parameter), Zui et al. considered both cable sag-ex-
tensibility and cable bending stiffness [10]:

=ζ L H
EI (8)

where EI is the bending stiffness of the cable. Employing the di-
mensionless parameters ζ and λ2, Ren et al. [11] classified different
types of cables and proposed formulas to estimate the cable tension
considering sag-extensibility and bending stiffness of the cable sepa-
rately. Ricciardi and Saitta [24] developed a continuous cable model
capable of considering sag-extensibility and bending stiffness simulta-
neously. Mehrabi and Tabatabai [19] introduced a finite difference
cable model that also considers variation in cross sectional area along
the cable, end conditions, and intermediate springs and dampers. Fig. 1
shows a discretized cable with N elements of length a and n internal
nodes (n=N− 1):

According to the finite difference cable model, the in-plane natural
frequencies and mode shapes of the cable can be calculated using the
eigenvalues and eigenvectors of the following eigenvalue equation:
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w∈ Rn×1 is a vector representing the mode shape components of the
cable at internal nodes, p is the complex-valued natural frequency of the
cable:

= − + −p δω iω δ1 2 (11)

where ω and δ are the undamped natural frequency and damping ratio
of the cable and M, C, and K∈ Rn×n are the mass, damping, and stiff-
ness matrices of the discretized cable (defined in Appendix A). Having
the cable properties: cable length, cable mass per unit length, cable
axial stiffness, cable bending stiffness, cable tension and employing the
finite difference cable model, natural frequencies of the cable can be
calculated.

3. Training data set

For most stay cables used in cable-stayed bridges around the world,
non-dimensional parameters λ2 and ζ (Eqs. (4) and (8)) fall within the
intervals λ2 < 3.1 and ζ > 50 [19,25–27]. Based on the range of cable
properties in new Ironton-Russell bridge, 1000 cables with properties
randomly chosen from the intervals 50 < ζ < 650, 0.1 < λ2 < 3.1,
30m < L < 170m, 15 kg/m < m < 60 kg/m, 500 kN < H <
3000 kN are selected. Knowing ζ, λ2, L, m, H, and E=196.5 GPa
(modulus of elasticity of stainless steel), the corresponding cable cross-
sectional area A and cable second moment of inertia I can be calculated
as below (using Eqs. (2)–(4), and (8)):
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where Le is calculated as Eq. (4). The acquired cable properties are then
fed into the finite difference cable model (with element length
a= 0.1m) to calculate the first 10 in-plane natural frequencies of each
cable. It is worth mentioning that although some combinations of cable
properties (Cable length, cable mass per unit length, cable axial stiff-
ness, cable bending stiffness, and cable tension) and the corresponding

1 2 3 4 n n-1 

1 2 3 4 N N-1
Fig. 1. Discretized cable with N elements and n internal nodes (n=N− 1).
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