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A B S T R A C T

Computationally-efficient simulations of structural responses, such as displacements and inter-story drift ratios,
are central to performance-based earthquake engineering. Calculating these responses involves potentially time-
consuming response history analysis of inelastic structural behavior. To overcome this burden, this paper in-
troduces a new inelastic model condensation (IMC) procedure. The method presented here is non-iterative and
uses the modal properties of the full model (in the elastic range) to condense the structural model such that the
condensed elastic model preserves the modal properties of the full model at certain modes specified by the
analyst. Then, by replacing the inter-story elastic forces with hysteretic forces, the inelastic behavior of the full
finite element model is incorporated into the condensed model. The parameters of these hysteretic forces are
easily tuned, in order to fit the inelastic behavior of the condensed structure to that of the full model under a
variety of simple loading scenarios. The fidelity of structural models condensed in this way is demonstrated via
simulation for different ground motion intensities on three different building structures with various heights.
The simplicity, accuracy, and efficiency of this approach could significantly alleviate the computational burden
of performance-based earthquake engineering.

1. Introduction

While nonlinear response history analysis (NLRHA) is the most
rigorous procedure to estimate seismic demand parameters [1, §16.2],
it is computationally expensive. This is true, especially, when there is a
need to perform that analysis for a large quantity of scenarios such as
required for surrogate modeling, optimization, or the reliability ana-
lysis and design of structures [2–8]. Considering the time-consuming
nature of detailed time-history analyses of high-dimensional inelastic
models, an accurate and computationally-efficient method of predicting
responses of inelastic structures, e.g. displacements and inter-story drift
ratios, would be of significant value in performance-based earthquake
engineering (PBEE) [9].

As alternatives to NLRHA, methods involving pushover analyses
alone or in combination with inelastic response spectra are well de-
veloped [10–13]. The dynamics of the problem are captured only by the
response spectrum, which reflects the dynamics of inelastic single de-
gree of freedom (DOF) systems. The mechanics of the detailed struc-
tural model is reflected only by the pushover analysis, which does not
involve dynamics and does require the specification of a distribution of
lateral static loads. Several studies have focused on the specification of

lateral load distributions for pushover analyses, such as Refs. [14–18],
among others. Unfortunately, simple pushover analyses neglect the
effect of higher modes on the response. To tackle this, a few notable
studies incorporate the higher modes’ dynamics in pushover analyses
[19–21]. Nevertheless, the errors in the predictions of displacements
and drift ratios are in the order of 30% [19].

Other researchers have approached this problem using reduced
(condensed) structural models [7,8,22]. This trend started when the
static and dynamic condensations were introduced [23,24], and it
continues to be refined [25,26]. Previous methods of model reduction
for hysteretic structures have either been limited to reducing only the
linear aspects of the system [27], retaining all the nonlinear elements
present in the system at some computational expense [28,29], or to
approximating the nonlinear system using modal superposition with
time-varying modes [30,31]. Recently, researchers are developing and
evaluating model reductions for modeling the hysteretic behavior of
structures [7], identifying damage detection [27,32], modeling elasto-
mers [33], and glass structures [34].

In this paper, a new condensation method in conjunction with a
framework for application is proposed for condensation of inelastic
dynamic structural models, by using the modal properties and replacing
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the elastic restoring forces with the hysteretic forces. In the following,
the inelastic model condensation (IMC) procedure to construct the
linear condensed model is first described. Next, the procedure to extend
the linear condensed model with hysteretic (Bouc–Wen) elements is
presented and the optimal values of the hysteretic parameters are ob-
tained using the Levenberg–Marquardt algorithm for several types of
loading regimes. Next, the resulting inelastic condensed models with
parameters fit with those different regimes are evaluated by imposing a
real earthquake to both the nonlinear finite element model (NFEM) and
the condensed model. Finally, the paper concludes with a discussion of
the results and highlights the performance of the proposed IMC ap-
proach.

2. Inelastic condensed dynamic modeling procedure

In the reduced-order modeling method presented here, the reduced
linear model is derived to match the natural frequencies and mode-
shapes of the full model at selected modes. The coordinates of the
condensed model correspond to the selected coordinates of the full
model. Then, the elastic restoring forces of the linear condensed model
are simply replaced by hysteretic forces. The hysteretic forces are
evolutionary [35] and are calibrated to match the inelastic behavior of
the detailed inelastic frame (NFEM) model. Importantly, the number of
hysteretic variables need not be larger than the number of condensed
coordinates and time-varying (or ‘nonlinear’) modes are not involved.

2.1. Full model

Consider a planar frame (structure) subject to horizontal ground
motion u t¨ ( )g . The set of linear equations that define the n-DOF struc-
tural system is given by:

+ + = − ıuMq Cq Kq M¨ ̇ ¨g (1)

where q is the n-dimensional vector of DOFs, which may include lateral
displacements, vertical displacements, and rotations; M C, , and K are
the ×n n mass, damping, and (linear-elastic) stiffness matrices, re-
spectively; and ı is the n-dimensional influence vector that applies üg to
the lateral nodal displacements.

2.2. Condensed model

First, the full model (Eq. (1)) is reduced to a condensed model with
fewer DOFs, say r DOFs, using the mass orthonormal mode shapes found
from the full model, = …ϕ ϕΦ [ , , ]n1 . The mode shapes ϕi should be
sorted by the absolute value of the modal participation factors

≡ ϕ ıMΓi i
T (or equivalently the modal participating mass ratio), as op-

posed to sorting based on the frequency (lowest to highest), to em-
phasize the highest contributing modes to the seismic response.

Let ∈ ×S r n be the selection matrix that specifies the DOFs to be
retained, denoted ⊂u q; i.e., =u Sq. Generally, the retained co-
ordinates u can be taken to be any set of r DOFs. However, in order to
introduce the nonlinear behavior in the present application, only hor-
izontal floor displacements should be selected, at most one per floor. In
this study, all the stories are included, though this need not be the case
in general.

The mode shapes in the retained DOFs are defined as =ψ ϕSi i
( = …i r1, , ). Now, the reduced model is reconstructed directly from the
reduced selected mode shapes. That is:
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where ,� � , and � are the reduced mass, damping, and stiffness
matrices; the square matrix = …ψ ψΨ [ , , ]r1 ; and ωi and ζi are the natural
frequency and damping ratio in the ith mode of the full model. Then,

the reduced model may be written as:

+ + = − uu u u R¨ ̇ ¨g� � � (3)

where = …Ψ R [Γ , ,Γ ]r
T

1 .
Unlike some reduced models that only match the dominant mode of

the full model [7], this condensed model (Eq. (3)) exactly matches the
modal dynamics of the full model at the selected frequencies ( …ω ω, , r1 ).
The condensed model can be thought of as a stick model with com-
munication between all the stories, i.e., ,� � , and � are fully popu-
lated, in general.

2.3. Treatment of hysteresis

Inelastic restoring forces are then incorporated into the condensed
model (Eq. (3)) by replacing the inter-story forces with inelastic re-
storing forces. The lateral deflections u relative to the ground are re-
lated to the inter-story deflections, denoted by = …Δ [Δ , ,Δ ]r1

T, through
the linear transformation:

= ⇒ = −u LΔ Δ L u1 (4)

where L is a r-dimensional lower-triangular matrix of unity. The
(elastic) inter-story forces are therefore given by L LΔT� . Now, instead
of elastic restoring forces, the inter-story shear forces are taken to be:

→ + −κ κL LΔ L LΔ I L Lz( )T T T� � � (5)

in which κ is a diagonal matrix where each element κi is the ratio of the
post-yield stiffness to pre-yield (elastic) stiffness at the ith story. The
auxiliary variables = …z zz [ , , ]r1

T are the hysteretic displacements,
which are given by the Bouc–Wen model [36,37]:

= − −−z β z z γ ż Δ̇ |Δ̇ | | | Δ̇ | | .i i i i i
η

i i i i
η1i i (6)

The uniaxial hysteretic behavior at the ith story is governed by the
hysteretic parameters η β,i i, and γi, independent of the other stories.
The parameter ηi governs the smoothness of the transition from the
linear to the nonlinear range [38], effectively adjusting the ‘knee’ of the
hysteretic loop. The parameters βi and γi govern the isotropic yield
displacement zi,yield in the ith story as follows:

= + −z β γ( ) .i i i
η,yield
1
i (7)

Inversely, if the yield displacement zi,yield is prescribed, then the hys-
teretic parameters are:
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where ⩽ ⩽ρ0 1i . By varying ρi, the hysteretic loop shape changes, as
illustrated in Fig. 1. (Note that other simplified hysteretic models could

Fig. 1. Representative hysteresis loops for =κ 0.1 and =η 2.
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