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Stochastic linear quadratic optimal control problems are considered. A unified 
approach is proposed to treat the necessary optimality conditions of closed-loop 
optimal strategies and open-loop optimal controls. Notice that the former notion 
does not rely on initial wealth, while the later one does. Our conclusions of closed-
loop optimal strategies are directly derived by suitable variational methods, the 
approach to which is different from [12], [11]. Moreover, the necessary conditions for 
closed-loop optimal strategies happen to be sufficient which takes us by surprise. 
Finally, two applications are given as illustration.
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1. Introduction

Suppose (Ω, F , P, F) is a complete filtered probability space, W (·) is a one-dimensional standard Brownian 
motion with natural filtration F ≡ {Ft}t≥0 augmented by all P-null sets. We consider the following stochastic 
differential equation (SDE):{

dX(s) =
[
A(s)X(s) + B(s)u(s) + b(s)

]
ds +

[
C(s)X(s) + D(s)u(s) + σ(s)

]
dW (s),

X(0) = x,
(1.1)

with s ∈ [0, T ] and a quadratic cost functional

J(u(·); 0, x) = 1
2 E

{ T∫
0

[
〈Q(s)X(s), X(s)〉 + 〈R(s)u(s), u(s)〉

]
ds

+〈GX(T ), X(T )〉
}

+ 〈γ2,EX(T )〉.

(1.2)
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Here A(·), B(·), C(·), D(·), Q(·), R(·) are suitable matrix-valued (deterministic) functions, b(·), σ(·) are 
stochastic processes, G is Rn×n-matrix, γ2 ∈ R

n. Under (H1), see Section 2, for any x ∈ R
n, u(·) ∈

L2
F
(0, T ; Rm), there exists a unique X(·) ∈ L2

F
(Ω; C([0, T ]; Rn)) satisfying (1.1). Consequently, (1.2) is well-

defined and we state the stochastic linear quadratic (SLQ, in short) optimal control problem as follows.

Problem (SLQ). For any given initial state x ∈ R
n, find ū(·) ∈ L2

F
(0, T ; Rm) such that

J(ū(·); 0, x) = inf
u(·)∈L2

F
(0,T ;Rm)

J(u(·); 0, x). (1.3)

Optimal linear quadratic problem was firstly studied in [8]. In the deterministic case, the control problem can 
be solved elegantly via the Riccati equation if R(·) is uniformly positive definite (see [16]). As to stochastic 
case, it was firstly discussed in [15], and were later studied in several other papers. In those works, R(s) > 0
was taken for granted until the work of [2]. It is pointed out in [2] that Problem (SLQ) might still be solvable 
if R(·) is negative. Some following-up works include [3], [4], [6]. For SLQ problem with random coefficients, 
we further refer to [10], [5], [13]. On the other hand, Ait Rami et al. [1] introduced a generalized Riccati 
equations involving pseudo-inverse of a matrix and an additional algebraic constraint. More recently, [12]
and [11] studied the optimal control problem from the view of closed-loop optimal strategies, and gave their 
characterization via the solvability of certain generalized Riccati equations.

In this paper, we also study the closed-loop optimal strategies of Problem (SLQ). From this point of 
view, this paper can be regarded as a continuation of [12], [11] in a certain sense. It is well-known that 
the first-order, second-order necessary condition of optimal controls can be derived by stochastic maximum 
principles which essentially relies on the spike variation. Hence can we directly apply similar variational ideas 
to investigate the case of closed-loop optimal strategies? Our main aim of this manuscript is to establish 
the necessity conditions of closed-loop optimal strategies with a new variational manner. To do it, we use 
the ideas of dynamic programming principle to transform the stationary optimality in [0, T ] into a dynamic
version in [t, T ] with t ∈ [0, T ]. After that, we introduce a particular perturbation of closed-loop optimal 
outcome control process in [t, t +ε]. Notice that this optimal outcome control is a linear form of optimal state 
and is defined by the closed-loop optimal strategy. We also develop the corresponding duality techniques 
and decoupling arguments. It is worthy mentioning that this approach can be adopted to discuss some time 
inconsistent optimal control problems (e.g. [7], [14]).

Among other things, we find two interesting facts which are stated below. First of all, the obtained 
necessary conditions of closed-loop optimal strategies turn out to be sufficient as well. In other words, 
we use the variational arguments, which are widely used in obtaining maximum principles, to obtain a 
characterization of closed-loop optimal strategies. Second, our introduced variation can reduce to classical 
spike variation, which enables us to derive the analogue results for open-loop optimal controls. Consequently, 
we give a unified treatment of both open-loop optimal controls and closed-loop optimal strategies.

This paper is organized as follows. In Section 2, we provide some preliminary notations and conclusions. In 
Section 3, after some preparations we prove the main results. In Section 4, we indicate how these techniques 
and conclusions can be used to study other problems. Section 5 concludes the paper.

2. Preliminaries

Given (1.1) and (1.2), we introduce the following hypotheses.

(H1). Let A(·), C(·) ∈ L∞(0, T ; Rn×n), Q(·) ∈ L∞(0, T ; Sn×n), B(·), D(·) ∈ L∞(0, T ; Rn×m), G ∈ S
n×n, 

γ2 ∈ R
n, b(·) ∈ L2

F
(Ω; L1(0, T ; Rn)), σ(·) ∈ L2

F
(0, T ; Rn), R(·) ∈ L∞(0, T ; Sm×m).

Here Sm×m is the set of symmetric m ×m matrices. For 0 ≤ s ≤ t ≤ T , H := R
n, Rn×n, etc, we define 

the following spaces.
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