ARTICLE IN PRESS

JOURNAL OF ENVIRONMENTAL SCIENCES XX (2017) XXX-XXX

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/jes

www.jesc.ac.cn

Evaluation of sulfur trioxide detection with online isopropanol absorption method

Jin Xiong^{1,2}, Yuran Li^{1,*}, Jian Wang¹, Yang Yang^{1,2}, Tingyu Zhu^{1,*}

 Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Cleaner Hydrometallurgical Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. E-mail: jxiong@ipe.ac.cn
 University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Article history: Received 5 June 2017 Revised 6 November 2017 Accepted 24 November 2017 Available online xxxx

Keywords: SO3 measurement SO3 absorption H2SO4 SO2 oxidation Error source analysis

ABSTRACT

Measurement of the SO₃ concentration in flue gas is important to estimate the acid dew point and to control corrosion of downstream equipment. SO3 measurement is a difficult question since SO₃ is a highly reactive gas, and its concentration is generally two orders of magnitude lower than the SO₂ concentration. The SO₃ concentration can be measured online by the isopropanol absorption method; however, the reliability of the test results is relatively low. This work aims to find the error sources and to evaluate the extent of influence of each factor on the measurement results. The test results from a SO₃ analyzer showed that the measuring errors are mainly caused by the gas-liquid flow ratio, SO_2 oxidation, and the side reactions of SO_3 . The error in the gas sampling rate is generally less than 13%. The isopropanol solution flow rate decreases 3% to 30% due to the volatilization of isopropanol, and accordingly, this will increase the apparent SO₃ concentration. The amount of SO₂ oxidation is linearly related to the SO₂ concentration. The side reactions of SO_3 reduce the selectivity of SO_4^{2-} to nearly 73%. As sampling temperature increases from 180 to 300°C, the selectivity of SO_4^{-} decreases from 73% to 50%. The presence of H₂O in the sample gas helps to reduce the measurement error by inhibiting the volatilization of the isopropanol and weakening side reactions. A formula was established to modify the displayed value, and the measurement error was reduced from 25%-54% to less than 15%. © 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

In the combustion process of fossil fuels, a small fraction of sulfur is converted to sulfur trioxide (SO₃) (Bongartz and Ghoniem, 2015; Bongartz et al., 2015; Choudhury and Padak, 2016; Cordtz et al., 2013; Fleig et al., 2013; Wang et al., 2015). Flue gas SO₃ has undesirable effects on power plant operation due to plume opacity and corrosion problems (Fernando, 2003; Srivastava et al., 2004; Vainio et al., 2016). As the flue gas temperature drops in the air pre-heater, SO₃ starts to react with water vapor to form gaseous H_2SO_4 at a rapid rate. As flue gas

with 10 vol.% H_2O is cooled down from 400 to 200°C, approximately 8.7% and 99.3% of the SO₃ is respectively converted into gaseous H_2SO_4 on the assumption of approximate equilibrium (Hardman et al., 1998). The high boiling point of H_2SO_4 generates a high acid dew point for the gas phase. With 10 vol.% water vapor, the H_2SO_4 concentrations range from 1 to 50 ppmv, and the dew point varies from 116 to 154°C (Banchero and Verhoff, 1975). In this work, the term "SO₃" includes gaseous SO₃ and H_2SO_4 . It is desirable to precisely measure the SO₃ concentration in the flue gas to limit equipment corrosion, heat loss, and acidic gas discharge. SO₃ measurement is difficult due to its

* Corresponding authors. E-mail: yrli@ipe.ac.cn (Yuran Li), tyzhu@ipe.ac.cn (Tingyu Zhu).

https://doi.org/10.1016/j.jes.2017.11.026

1001-0742/© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Please cite this article as: Xiong, J., et al., Evaluation of sulfur trioxide detection with online isopropanol absorption method, J. Environ. Sci. (2017), https://doi.org/10.1016/j.jes.2017.11.026

ARTICLE IN PRESS

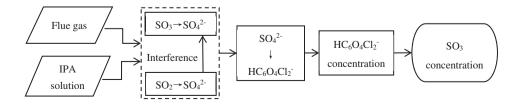
high reactivity, and can be hindered by: (1) comparatively low concentrations of SO_3 under typical conditions (Spellicy and Pisano, 2006; Blythe and Dombrowski, 2004), (2) interference from a high SO_2 concentration (Jaworowski and Mack, 1979), (3) losses of SO_3 by surface reactions or filter cake filtration (Belo et al., 2014; Cao et al., 2010; Galloway et al., 2015; Zhuang et al., 2011), and (4) SO_3 condensation (Guo et al., 2017).

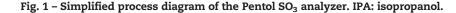
The SO₃ measurement methods mainly include the controlled condensation method (CCM) and the isopropanol (IPA) absorption bottle method (Maddalone et al., 1979; Yang and Zheng, 2016). The CCM is the most-used technique, and is based on the condensation of H₂SO₄ above the water dew point and subsequent sulfate analysis. Maddalone et al. (1979) found that 95% of the injected H_2SO_4 could be recovered from a synthetic flue gas using the CCM with a coefficient of variance of $\pm 6.7\%$. This method cannot be used to continuously measure SO₃ concentrations in flue gas online. The IPA absorption bottle method is based on the absorption of SO₃ in an 80 vol% IPA solution diluted in water and sulfate analysis afterward. The main problem is interference by SO₂. The oxidation of a few parts per million of SO₂ dissolved in the IPA solution will result in a significant amount in proportion to the SO₃ concentration (Fleig et al., 2012). The dissolved SO₂ can be partially removed by bubbling air through the isopropanol solution.

The Pentol SO₃ analyzer (Pentol GmbH, Germany) based on the IPA method is a modified version of the Severn Science Analyzer designed by Jackson et al., and can be used to continuously measure SO₃ in flue gas online (Jackson et al., 1970, 1981). Typical values for the oxidation of SO₂ yield the equivalent of only 0.1 ppmv SO3 for each 1000 ppmv SO2 (Jackson et al., 1970). However, different researchers have obtained conflicting conclusions about the measurement errors. The results tested by Cooper at an Orimulsion-fired power plant showed that the SO₃ concentrations obtained with the Severn Science analyzer were 25 times higher than those obtained with the CCM (Cooper, 1995). An almost SO₃-free mixed gas containing air and 1000 ppmv SO2 was tested by Fleig, and the results showed that less than 1 ppmv SO3 was detected with the CCM, while a value of almost 10 ppmv SO₃ was obtained with the Pentol SO₃ analyzer (Fleig et al., 2012). A possible explanation is the oxidation of dissolved SO₂. It is worth noting that, initially, a gas stripping tube was used to remove dissolved SO₂ (Jackson et al., 1970). However, the gas stripping tube was removed from the current Pentol SO3 analyzer. Koebel and Elsener (1997) obtained relatively lower SO₃ concentrations with the IPA drop method, for which the sampling process is similar to that of the Pentol SO₃ analyzer, and the explanation was that SO₃ may react with isopropanol, forming the monoester or diester of sulfuric acid. The gas sampling rate is controlled by a mass flow controller (MFC)

calibrated for nitrogen (N₂). Fleig et al. (2012) found that the actual gas sampling rate was lower due to the high CO₂ concentration under oxy-fuel fired conditions. An MFC correction factor for the flue-gas was calculated, and the reading of the Pentol SO₃ analyzer was divided by this correction factor (Fleig et al., 2012). In addition, volatilization loss of the IPA solution would lead to a positive deviation in measurement results (Barton and Mcadie, 1972).

In summary, the measurement errors of the SO_3 concentration mainly come from the measuring error of the gas sampling rate, IPA solution volatilization, the side reactions of SO_3 with isopropanol, and SO_2 oxidation. The aim of this work is to discover and evaluate the extent of influence of each factor on the measuring results, and then to reduce measuring errors by adjusting the process according to the influence factors. For the factors that cannot be controlled, correction coefficients are proposed to revise the measuring result.


1. Measurement principle and experiment platform


Both the sampling process and the analysis method for SO_3 are different between the Pentol SO_3 analyzer and the traditional IPA absorption bottle method. For the IPA absorption bottle method, flue gas is bubbled through an IPA absorption bottle which is placed in an ice water bath, wherein the SO_3 is absorbed. The SO_3 is stored in the IPA solution in the form of SO_4^{2-} , which is measured by titration with barium perchlorate using thorin as an indicator.

Compared with the IPA absorption bottle method, the advantage of the Pentol SO3 analyzer is that it can achieve continuous online SO3 measurement. The specific measurement principle is as follows. A simplified process diagram of the Pentol SO₃ analyzer is shown in Fig. 1. The flue gas continuously flows through a heated sampling probe and filter, and then contacts the IPA solution. Subsequently, the SO₃ in the flue gas is absorbed into the IPA solution as sulfate ions. As the solution passes through a bed of barium chloranilate, where reaction (1) occurs, and acidic chloranilate ions are formed. The acidic chloranilate ions absorb light preferentially at 535 nm as they pass through the optical cell continually, and then a series of voltages (U, mV) are output by the photometer. By maintaining a constant gas-liquid flow ratio (*m*), there is a near-exponential relationship between the SO_3 concentration (C_{SO3} , ppmv) and "U", as shown in Eq. (2).

$$SO_4^{2-} + BaC_6O_4Cl_2 + H^+ \rightarrow BaSO_4 + HC_6O_4Cl_2^{-}$$
(1)

$$\log U = a \times m \times C_{SO3} + b \tag{2}$$

Please cite this article as: Xiong, J., et al., Evaluation of sulfur trioxide detection with online isopropanol absorption method, J. Environ. Sci. (2017), https://doi.org/10.1016/j.jes.2017.11.026

Download English Version:

https://daneshyari.com/en/article/11021767

Download Persian Version:

https://daneshyari.com/article/11021767

Daneshyari.com