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A B S T R A C T

The Map Challenge organized by the Electron Microscopy Data Bank has prompted the development of an Xmipp
high resolution reconstruction protocol (which we will refer to as highres) that is integrated in the software
platform Scipion. In this work we describe the details of the image angular alignment and map reconstruction
steps in our new method. This algorithm is similar to the standard projection matching approach with some
important modifications, especially in the area of detecting significant features in the reconstructed volume. We
show that the new method is able to produce higher resolution maps than the current de facto standard as
measured by the Fourier Shell Correlation, the Monogenic Local Resolution and EMRinger.

1. Introduction

Single Particle Analysis of macromolecular structures by Electron
Microscopy (EM) has become in the last few years one of the most
successful techniques for Structural Biology (Nogales, 2016) due to its
ability to achieve near-atomic resolution and to explore conformational
flexibility, using low amounts of sample material. The automation of
the image acquisition process at the microscope and the introduction of
Direct Electron Detectors have allowed the recording of vast amounts of
data whose analysis results in three-dimensional maps of the macro-
molecule under study from which structural models can be derived.
However, the images acquired at the microscope are extremely noisy
(Signal-to-Noise Ratios between 0.1 and 0.01). Such noisy measure-
ments require robust data analysis methods.

The prerequisites to achieve near-atomic resolution include 1) a
structurally homogeneous population of projection images obtained
using the crucial 3D classification algorithms (Scheres, 2012), 2) a
sufficiently good angular coverage to measure every region in Fourier
space, and 3) a sufficiently good frequency coverage to measure every
frequency and to preserve the microscope structural information at as
high resolution as possible. To accomplish this last requirement, images
are acquired at different defoci, especially at low defocus to preserve
high frequency information. The 3D reconstruction process alternates

between angular assignment and three-dimensional reconstruction to
extract the maximum of structural information present at the micro-
graphs. Overall, the whole problem can be seen as a regression in which
the projection images are the data to be fitted, and the volume and the
alignment parameters constitute the model.

All processing steps must be robust to high levels of noise and need
to avoid overfitting (reconstruction artifacts that satisfy data constraints
but that are either dominated by noise or that are far away from the
best possible solution). Structural knowledge can also be incorporated
in the analysis workflow, and most common ways are either using a
Bayesian prior (as Relion did Scheres, 2012) or by regularization (for a
review of regularization in 3D reconstruction, see Sorzano et al.
(2017)).

Relion (Scheres, 2012), at the moment the most common method to
refine maps in the field of Single Particle Analysis by EM, integrates the
whole regression problem in a single functional that is optimized in a
greedy fashion starting from an initial estimate of the volume to be
reconstructed. This functional includes a Bayesian prior about the sta-
tistical distribution of the objects to be reconstructed (coefficients in
Fourier space are independently distributed, with independent real and
imaginary parts, Gaussianly distributed with zero-mean and a variance
that is estimated from the data itself). Although in general, the prior is
not accurate for macromolecular structures (Sorzano et al., 2015), it has
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the advantage that it is mathematically tractable and results in a low
pass filter of the reconstructed volume similar to a Wiener filter
(Scheres, 2012).

This Bayesian approach has currently dominated the cryoEM 3D
reconstruction field, specially for its generalization to the very im-
portant task of multiple maps reconstruction as part of a 3D classifi-
cation process. However, this approach is not the only valid strategy for
map reconstruction. Actually, before the introduction in cryoEM of the
Maximum Likelihood (Scheres et al., 2005) and Maximum a posteriori
methods (Scheres, 2012), the standard approach to 3D angular align-
ment and reconstruction was the so-called “Projection Matching”
(Penczek et al., 1992; Penczek et al., 1994). Recently, novel im-
plementations of Maximum Likelihood based on GPU processing and
stochastic gradient descent have significantly reduced the processing
time (Punjani et al., 2017).

Let us refer to the parameters defining the angular alignment of the
whole dataset as Θ and to the reconstructed volume as V . In an ex-
tremely simplified manner, we may think of the Maximum Likelihood
method as an algorithm that minimizes
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where ̃I is the set of pixels from the acquired images (if the underlying
algorithm allows an image to be at multiple angular orientations with
different probabilities, then ̃I will contain multiple copies of the mea-
sured data and Θ will have several components devoted to the same
image), PΘ is a projection operator that calculates the projections of the
volume V along the directions and shifts specified by Θ (depending on
the specific implementation, this projection operator may include or
not the aberrations caused by the electron microscope), and ||·||W is a
weighted norm in which different pixels may be weighted differently
according to some scheme adopted by the algorithm (the statistical
distributions assumed for the noise and the alignment parameters au-
tomatically determine the form of this norm; this generic algorithmic
framework may be adopted in real or Fourier space) (Sorzano et al.,
2017). This problem is simply a data fidelity term (the reconstructed
object has to be compatible with the acquired projections). The Baye-
sian approach adds a priori knowledge about the statistical distribution
of the volumes being reconstructed that, in its turn, is translated into
the minimization problem as an extra term that penalizes unlikely re-
constructions
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The traditional approach in cryoEM, projection matching, decomposes
the minimization in P1 in two subproblems that are minimized sepa-
rately and iteratively (k denotes the iteration number)
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In its most traditional approach, ̃I is restricted to have a single copy of
the experimental measurements I, that is, only one alignment para-
meter set is estimated per projection. The first subproblem P a( 1 ) is
called angular assignment (each experimental image is assigned a set of
parameters that encodes its projection direction and in-plane alignment
with respect to the current guess of the macromolecular structure). P1a
strongly depends on the initial map used as reference. The second
subproblem uses the assigned angles to update the 3D map of the
macromolecule. In practice, the Maximum Likelihood (ML) and Max-
imum A Posteriori (MAP) problems are solved through a numerical
technique called Expectation Maximization that boils down to an
iterative scheme similar to angular assignment and 3D reconstruction
iterations (Scheres et al., 2005; Scheres, 2012) (the prior in MAP affects
the specific form of the iterative step in P b( 1 ); the fact that a Gaussian
distribution is the conjugate prior of the distribution chosen for the

likelihood term helps to keep the mathematical complexity of the EM
iteration tractable). In the approach with subproblems (P a1 and P b1 ), it
is still possible to introduce a priori knowledge about the class of vo-
lumes being reconstructed through the so-called image restoration
methods (Sorzano et al., 2017). An example of map restoration is to
restrict maps to be members of certain subsets defining properties a
good map should have (e.g., non-negative maps, maps with compact
space support, etc.) (Sorzano et al., 2008). Projection onto Convex Sets
(Carazo, 1992), which were early introduced in the EM field, was a
form of incorporating this a priori information. However, statistical
properties of the volumes (like a Bayesian prior Scheres, 2012) or any
other known feature of the volume being reconstructed could also be
used in a restoration scheme.

The ML approach introduced an important concept in the EM
community: an experimental image may occupy more than one pro-
jection direction and in-plane alignment, but with different probability.
This probability gives its weighting factor during the reconstruction
process. The rationale behind this idea is that images are so noisy that
the maximum correlation peak calculated during the alignment is prone
to errors and allowing the image to sit at different angles gives it more
opportunities to find its correct localization (ideally, the likelihood
distribution for a single experimental image should converge to a delta,
although this is not always the case in practice for all images). This idea
of more than one location was further exploited for the blind con-
struction of an initial model (Sorzano et al., 2015). On the other hand,
the fact that all experimental images are, in principle, allowed to oc-
cupy all projection directions (with different probabilities) may cause
that some projection directions with intrinsically more Signal-to-Noise
Ratio are over-represented (Vargas et al., 2016; Vargas et al., 2017),
what we refer to as the attraction problem (Sorzano et al., 2010).

In this work, instead of using the image likelihood as weight, we
used its significance (which is the probability that a random image
taken from the set has a cross-correlation smaller than the correlation of
this experimental image), and we promote, as in projection matching,
an angular assignment in which each image receives a single angular
orientation. Despite the appeal of letting an image to occupy several
angular orientations (due to the uncertainty introduced by noise), in
reality an image is known to come from a single (although unknown)
orientation. Angular assignment algorithms will very likely commit
assignment errors. For the sake of argument, let us consider that the
error rate of the angular assignment is 30% (that is, 30% of the particles
are assigned an incorrect orientation). If we now allow for a second
angular assignment, with different weights, we know that for the 70%
of particles that were correctly assigned, this second assignment will be
incorrect. And for the remaining 30%, only about 70% will be correctly
assigned. From the whole set of assignments (that now is twice the size
of the dataset because of the double angular assignment), only 45.5%
(= +0.7·0.5 0.3·0.7·0.5) of it has a correct angular assignment. That is,
by increasing the number of positions in which a particle might sit (as a
measure to fight noise), we have decreased the accuracy of our angular
assignment, possibly resulting in a low pass filtering of the re-
constructed volume due to the incoherent averaging in the Fourier
space. In principle, this situation should be alleviated by the fact that
the different projection directions have different weights, and that this
weight distribution would ideally be very spiky around the true angular
assignment. However, this ideal situation is not always the case. In
Fig. 1 we show the weight profile for an experimental projection of a
ribosome when it is compared to the whole gallery of projections of the
final reconstructed volume sampled every 5 degrees and with a max-
imum shift of 24Å. More than 35 million combinations of orientation
and positions were explored. Relion and highres both agreed on the
angular assignment and shift of this particle, with a precision of less
than 1° in the angles and 1 pixel in the shifts. Relion is based on the l2
norm of the difference between the volume reprojection and the ex-
perimental projection with a frequency weight given by the noise var-
iance, while highres is based on the correlation of the volume
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