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A B S T R A C T

Bismuth antimony telluride based thermoelectric (TE) materials have been intensively developed and synthe-
sized using different mechanisms, for the room temperature TE applications. In particular, bismuth antimony
telluride based TE alloys are very sensitive to deviations in their composition, and to contamination during the
materials synthesis. Oxygen contamination during Bi-Sb-Te based materials synthesis is one of the critical factors
that alters or diminishes thermoelectric-transport properties. Thus, in this study, how the oxide formation me-
chanism on the powder surface and bulks of p-type Bi0.5Sb1.5Te3 alloys affected the microstructural features and
thermoelectric properties were elucidated quantitatively. While applying heat treatment (HT) to Bi0.5Sb1.5Te3
powder, the constituent elements interacted with the ambient atmosphere and formed a new oxide phase which
acted as a barrier to carrier transport. At the initial stage (300 °C) of heat treatment, only the powder surface was
oxidized due to the reaction of outer surface atoms with atmospheric air and moisture. While increasing in
temperature during HT, this surface oxygen contamination diffused further inside the powder through the grain
boundaries. More diffusion and spreading occurred throughout the matrix at 450 °C. The increment of oxygen
content from 0.05 to 0.82 wt% drastically decreased the electrical conductivity by 67%, and thermal con-
ductivity by 7% at the heat treatment temperature of 450 °C. This reduction behavior is mainly due to severe
scattering of the carriers/phonons at the new formation of oxide (Sb2O3) phase near grain boundaries and within
the matrix. At a glance, a small increase in the oxygen content wouldn't significantly influence the thermoelectric
properties; however, at a certain level of oxide formation (0.82 wt%), severe effects could occur due to the
intensified scattering or trapping of carriers by the oxide barrier formation at the grain boundaries.

1. Introduction

Thermoelectric materials (TE) have become very attractive in rela-
tion to their power generation (Seebeck effect) and active refrigeration
(Peltier effect) [1]. The efficiency of TE materials can be deduced by the
dimensionless figure of merit (ZT), which is defined as the ratio of the
power factor (σα2) to the thermal conductivity (κ). Thus, a good TE
material should exhibit high electrical conductivity with a high Seebeck
coefficient, and low thermal conductivity. It should also minimize the
Joule heating effect, to ensure the large potential/thermo-voltage
across the junction and create a steep temperature gradient [1,2].
Managing all these parameters within a certain material can be
achieved by doping [3], scattering from nanoscale endotaxial pre-
cipitation and mesoscale grain boundaries, atomic-scale alloy scattering
[4], nanostructuring [5], quantum confinement, superlattices [6], and

creating nanocomposites [7]. As mentioned above, improving the
thermoelectric properties of thermoelectric materials using powder
metallurgy processes has given promising results.

On the other hand, the thermoelectric materials fabricated by
powder metallurgy techniques such as gas-atomization [8,9], mechan-
ical alloying [10], hot extrusion method, and hot-pressing [11,12] are
commonly used for the fabrication of TE elements. However, there is a
possibility of excessive oxidation of the final powder during fabrication
or in the next process. To maintain high purity powder, the particles
must be isolated from atmospheric oxidation or any contamination. It is
known that reducing the powder using hydrogen can upgrade the
powder characteristics because of a lower oxygen concentration. Even
so, the reduction of powder using hydrogen or ideal gases does not
markedly or perfectly affect the TE properties.

In particular, the control of the oxides in materials, or the oxygen
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atoms present in bismuth telluride alloys, is considered essential be-
cause it influences their electrical properties. This is because atomic-
scale defects such as vacancies and impurities affect carrier behavior
[13]. M.W. Oh et al. reported that dissolved oxygen would affect the
thermoelectric properties of Bi0.5Sb1.5Te3 because the electrical

conductivity would be decreased by impurity scattering [14]. Lim et al.
observed that the oxygen concentration was reduced after hydrogen
reduction, but also that the Seebeck coefficient did not vary in spark
plasma sintered Bi0.5Sb1.5Te3 compounds [15].

In a few reports, it was suggested that the donor-like behavior of

Fig. 1. SEM micrographs of heat-treated GA powder at different temperature held for 1 h: Low and high magnification SEM images of (a, b) GA powder, (c, d) GA
powder heat treated at 300 °C, (e, f) GA powder heat treated at 350 °C, (g, h) GA powder heat treated at 400 °C, and (i, j) GA powder heat treated at 450 °C.
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