Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.elsevier.com/locate/scriptamat

Interfacial energy between Al melt and TiB₂ particles and efficiency of TiB₂ particles to nucleate α -Al

Lili Zhang ^a, Qiuju Zheng ^{a,b}, Hongxiang Jiang ^a, Jiuzhou Zhao ^{a,b,*}

^a Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China

^b School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China

ARTICLE INFO

Article history: Received 13 July 2018 Received in revised form 25 September 2018 Accepted 25 September 2018 Available online xxxx

Keywords: Aluminium Interfacial energy Heterogeneous nucleation Grain refinement

ABSTRACT

The interfacial energy between Al melt and TiB₂ particles is calculated based on the Gibbs absorption isotherm. The efficiency of TiB₂ to nucleate α -Al is discussed. The interfacial energy between Al melt and TiB₂ remains almost constant while the efficiency of TiB₂ to nucleate α -Al depends on the solute Ti concentration (x_{Ti}) in Al melt. When x_{Ti} is less than 1.78×10^{-4} at%, TiB₂ cannot nucleate α -Al. With the increase of x_{Ti} , the efficiency of TiB₂ to nucleate α -Al increases until a complete wetting of TiB₂ particles by solid Al in the environment of liquid Al is achieved.

© 2018 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Inoculation has become a common practice to achieve a fine equiaxed grain structure in the industrial production [1–6]. Al-Ti-B master alloys are widely used as the grain refiners for aluminium alloys [7,8]. Much work has been done to investigate the inoculant effect of the Al-Ti-B master alloys. Models have been proposed in the last decades to explain the mechanism by which the Al-Ti-B master alloys refine the α -Al grains [9–13]. But none of them can explain all the experimental observations. Especially the exact role of TiB₂ particles during the nucleation process of α -Al is still under dispute.

In fact, the efficiency of TiB₂ particles to nucleate α -Al is closely related to the interfacial energies among the Al melt, TiB₂ particles and α -Al. It can be judged by a dimensionless parameter $\nu_{\gamma} = \frac{\gamma_{Al(L)/TiB_2(S)} - \gamma_{\alpha.Al(S)/TiB_2(S)}}{\gamma_{Al(L)/\alpha.Al(S)}}$ with $\gamma_{Al(L)/TiB_2(S)}$, $\gamma_{\alpha-Al(S)/TiB_2(S)}$ and $\gamma_{Al(L)/\alpha-Al(S)}$ being the interfacial energies between Al melt and TiB₂ particles, between α -Al and TiB₂ particles and between Al melt and α -Al, respectively.

The interfacial energies $\gamma_{AI(L)/\alpha-AI(S)}$ and $\gamma_{\alpha-AI(S)/TiB_2(S)}$ have been reported [8,14]. Up to date, there exists no reports on $\gamma_{AI(L)/TiB_2(S)}$. The measurement of $\gamma_{AI(L)/TiB_2(S)}$ is, if possible, quite difficult especially due to the enrichment of solute Ti in the Al melt at the interface [15]. This work will first theoretically calculate $\gamma_{AI(L)/TiB_2(S)}$ based on the Gibbs adsorption isotherm and then discuss the efficiency of TiB₂ particles to nucleate α -Al under the solute Ti effect based on the interfacial energies.

* Corresponding author at: Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.

E-mail address: jzzhao@imr.ac.cn (J. Zhao).

https://doi.org/10.1016/j.scriptamat.2018.09.042 1359-6462/© 2018 Published by Elsevier Ltd on behalf of Acta Materialia Inc. For an aluminium alloy melt with the presence of TiB₂ particles and solute Ti, $\gamma_{Al(L)/TiB_2(S)}$ satisfies [15–17]:

$$\Gamma_{\text{Ti}} = -\frac{d\gamma_{\text{Al}(\text{L})/\text{TiB}_2(\text{S})}}{d\mu_{\text{Ti}}^i} = -\frac{d\gamma_{\text{Al}(\text{L})/\text{TiB}_2(\text{S})}}{d\mu_{\text{Ti}}}$$
(1a)

$$\Gamma_{Ti} = \frac{\chi_{Ti}^{i} - \chi_{Ti}}{\omega_{Al(L)/TiB_{2}(S)}} \approx \frac{\chi_{Ti}^{i}}{\omega_{Al(L)/TiB_{2}(S)}}$$
(1b)

where Γ_{Ti} is the interfacial excess of solute Ti, x_{Ti} and x_{Ti}^{i} are respectively the mole fractions of solute Ti in the Al melt and at the Al(L)/TiB₂ (S) interface, $\omega_{\text{Al}(L)/\text{TiB}_2(S)} = \sqrt{\omega_{\text{Al}(L)}\omega_{\text{Ti}(L)}}$ is the molar area of the Al(L)/ TiB₂(S) interface [16], $\omega_{\text{Al}(L)} = f \cdot (N_a)^{1/3} \cdot V_{\text{Al}(L)}^{2/3}$ and $\omega_{\text{Ti}(L)} = f \cdot (N_a)^{1/3} \cdot V_{\text{Ti}(L)}^{2/3}$ are respectively the molar areas of the Al and the Ti melt [18], N_a is the Avogadro's number, $V_{\text{Al}(L)}$ and $V_{\text{Ti}(L)}$ are respectively the molar volumes of the Al and the Ti melt, μ_{Ti} and $\mu_{\text{Ti}}^{i}(\mu_{\text{Ti}} = \mu_{\text{Ti}}^{i})$ under the equilibrium conditions) are the chemical potentials of solute Ti in Al melt and at the Al(L)/TiB₂(S) interface, respectively.

Using the relation $\mu_{Ti}^i = \mu_{Ti}^0 + \Omega_{Al-Ti}(1 - x_{Ti}^i)^2 + R_g T \ln x_{Ti}^i$ Eq. (1) can be rewritten as:

$$-d\gamma_{\mathrm{AI}(\mathrm{L})/\mathrm{TiB}_{2}(\mathrm{S})} = \frac{x_{\mathrm{Ti}}^{i}}{\omega_{\mathrm{AI}(\mathrm{L})/\mathrm{TiB}_{2}(\mathrm{S})}} \left[2\Omega_{\mathrm{AI}-\mathrm{Ti}} \left(x_{\mathrm{Ti}}^{i} - 1 \right) + \frac{R_{\mathrm{g}}T}{x_{\mathrm{Ti}}^{i}} \right] dx_{\mathrm{Ti}}^{i}$$
(2)

where μ_{11}^{0} is the standard chemical potential of bulk Ti, Ω_{Al-Ti} is the interaction energy parameter between the Al and Ti atoms in Al-Ti melt, R_{g} is the gas constant and T is the thermodynamic temperature.

Integrating Eq. (2) using the boundary condition $\gamma_{Al(L)/TiB_2(S)}|_{x_{TT}^{\pm},0} = \gamma_{Al(L)/TiB_2(S)}^{0}$, one has:

$$\begin{split} \gamma_{AI(L)/TiB_{2}(S)} &= -\frac{2\Omega_{AI-Ti}}{3\omega_{AI(L)/TiB_{2}(S)}} \Big(x_{Ti}^{i}\Big)^{3} \\ &+ \frac{\Omega_{AI-Ti}}{\omega_{AI(L)/TiB_{2}(S)}} \Big(x_{Ti}^{i}\Big)^{2} - \frac{R_{g}T}{\omega_{AI(L)/TiB_{2}(S)}} x_{Ti}^{i} + \gamma_{AI(L)/TiB_{2}(S)}^{0} \end{split} \tag{3}$$

where $\gamma_{Al(L)/TiB_2(S)}^{0}$ is the interfacial energy between the pure Al melt and TiB_2 particles.

 x_{Ti}^{i} depends on x_{Ti} according to the following equation (see Appendix A) [16]:

$$\ln\left[\left(\frac{x_{\text{Ti}}^{i}}{1-x_{\text{Ti}}^{i}}\right) / \left(\frac{x_{\text{Ti}}}{1-x_{\text{Ti}}}\right)\right] = \frac{\frac{2\Omega_{\text{Al-Ti}}}{Z} \left[Z_{\text{L}}\left(x_{\text{Ti}}^{i}-x_{\text{Ti}}\right) - Z_{1}\left(x_{\text{Ti}}-0.5\right)\right] + \left(\Delta S_{\text{m}}^{\text{Al}} - \Delta S_{\text{m}}^{\text{Ti}}\right)T}{R_{\text{g}}T} - \frac{\omega_{\text{Al}(\text{L})/\text{TiB}_{2}(\text{S})}\left(\gamma_{\text{Ti}(\text{L})/\text{TiB}_{2}(\text{S})}^{0} - \gamma_{\text{Al}(\text{L})/\text{TiB}_{2}(\text{S})}^{0}\right)}{R_{\text{g}}T}$$

$$(4)$$

where *Z* is the coordination number of an atom in the pure Al melt, *Z*_L is the coordination number of an atom in the interfacial monolayer within the interfacial monolayer, *Z*₁ is the coordination number of an atom in the interfacial monolayer to one of the adjacent layers, ΔS_m^{Al} and ΔS_m^{TI} are respectively the entropies of fusion of Al and Ti [16], $\gamma_{Ti(L)/TiB_2(S)}^{0}$ is the interfacial energy between the pure Ti melt and TiB₂ particles [19].

 $\gamma_{Al(L)/TiB_2(S)}^{0}$ can be calculated by (see Appendix B) [18]:

$$\gamma^{0}_{Al(L)/TiB_{2}(S)} = \frac{\frac{0.364(2\Omega_{Al-B} + \Omega_{Al-Ti} - \Delta_{f}H_{TiB_{2}})}{3} + \frac{0.310f \cdot f_{b}^{1/3}(\Delta_{m}H_{Ti} + 2\Delta_{m}H_{B})}{3} + (3.5 \pm 1)T}{\omega_{Al(L)/TiB_{2}(S)}}$$
(5)

where $\Delta_{\rm f} H_{\rm TiB_2}$ is the heat for the formation of TiB₂, $\Delta_{\rm m} H_{\rm Ti}$ and $\Delta_{\rm m} H_{\rm B}$ are the enthalpis of fusion of Ti and B, respectively, $f_{\rm b}$ is the bulk packing factor [20]. The unit of the constant (3.5 ± 1) is J/(mol·K). $\Omega_{\rm Al-B}$ is the interaction energy parameter between the Al and B atoms in Al-B melt, which can be calculated using the relation $\Omega_{\rm Al-B}(1 - x_{\rm B})^2 = R_{\rm g}T \ln \gamma_{\rm B}$ [20,21]. $\gamma_{\rm B}$ is the activity coefficient of solute B in Al melt. It can be determined by using the Wilson equation $\ln \gamma_{\rm B} = 1 - \ln(1 - x_{\rm Al}A_{\rm Al/B}) - \frac{x_{\rm B}}{1 - x_{\rm A}A_{\rm Al/B}} - \frac{x_{\rm Al}(1 - A_{\rm B/Al})}{1 - x_{\rm B}A_{\rm B/Al}}$. $A_{\rm Al/B} = 0.0016T - 3.2795$ and $A_{\rm B/Al} = -0.0004T$ + 1.1121 are the Wilson parameters [21]. $x_{\rm Al}$ and $x_{\rm B}$ are the mole fractions of solvent Al and solute B, respectively.

Fig. 1a shows x_{Ti}^{i} as a function of x_{Ti} calculated using Eq. (4) with the thermo-physical parameters listed in Table 1. It demonstrates that x_{Ti}^{i} increases with x_{Ti} and the temperature of the melt has a very weak effect

Table 1

Thermo-physical parameters used in the calculations.

Symbol	Value	Unit	Reference
Rg	8.314	J/(mol · K)	-
Na	6.02×10^{23}	1/mol	-
Ω_{Al-Ti}	-120,000	J/mol	[22]
V _{Al}	1.13×10^{-5}	m ³ /mol	[23]
V _{Ti}	$1.16 imes 10^{-5}$	m ³ /mol	[23]
$\Delta_{\rm m} H_{\rm Ti}$	14,146	J/mol	[24]
$\Delta_m H_B$	50,200	J/mol	[24]
$\Delta_{\rm f} H_{\rm TiB_2}$	-323,842	J/mol	[25]
fb	0.74	-	[20]
f	1.06	-	[18]
$\gamma_{\text{Ti}(L)/\text{TiB}_2(S)}^{0}$	0.164	J/m ²	[19]
ΔS_m^{Al}	11.48	J/(mol · K)	[16]
ΔS_{m}^{Ti}	7.29	J/(mol · K)	[16]
Ζ	12	-	-
ZL	6	-	-
Zl	3	-	-

on the dependence of x_{Ti}^{i} on x_{Ti} . The temperature effect on the segregation of solute Ti to the interface is thus neglected in the following discussion especially considering that the nucleation of α -Al may only occur in a narrow temperature region below the melting point of Al $T_{\text{m}} = 933\,$ K.

 x_{Ti} may vary in a range determined by the solubility products of TiB₂ ($K_{\text{TiB}_2^{\theta}}$), TiAl₃ ($K_{\text{TiAl}_3^{\theta}}$) and AlB₂ ($K_{\text{AlB}_2^{\theta}}$) in Al melt [26] (see Eqs. (6a), (6b), and (6c)), as shown by the shadowed area in Fig. 1b for the melt at T_{m} .

$$x_{\mathrm{Ti}} \cdot x_{\mathrm{B}}^2 \le K_{\mathrm{TiB}_2}^{\theta} \tag{6a}$$

$$x_{\text{Ti}} \leq K_{\text{TiAl}_3}^{\theta}$$
 (6b)

$$x_{\rm B} \le \sqrt{K_{\rm AlB_2}^{\theta}} \tag{6c}$$

The calculated $\gamma_{Al(L)/TiB_2(S)}$ is plotted in Fig. 2 as a function of x_{Ii}^{i} at T_m together with $\gamma_{\alpha-Al(S)/TiB_2(S)}$ [14] and ν_{γ} . The results demonstrate that γ_{Al} (L)/TiB₂(S) remains almost constant while $\gamma_{\alpha-Al(S)/TiB_2(S)}$ decreases dramatically with x_{Ti}^{i}

Figs. 1b and 2 indicate that the value of v_{γ} and the efficiency of TiB₂ particles to nucleate α -Al vary with x_{1i}^{i} (or x_{1i}):

(1) when $x_{\text{Ti}}^{\text{i}} < 3.50 \times 10^{-4}$ at% (or $x_{\text{Ti}} < 1.78 \times 10^{-4}$ at%) (blue areas in Figs. 1b and 2), $v_{\gamma} < -1$ and TiB₂ particles cannot nucleate α -Al and no grain refinement of α -Al can be achieved.

Fig. 1. (a) Solute Ti concentration in the Al melt at the Al(L)/TiB₂(S) interface vs the solute Ti concentration in the bulk Al melt at different temperatures; (b) Concentration of solutes Ti and B in the bulk Al melt at T_m.

Download English Version:

https://daneshyari.com/en/article/11023178

Download Persian Version:

https://daneshyari.com/article/11023178

Daneshyari.com