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a b s t r a c t

We analyse the standard optimal control fishery biomass model and derive some novel
results on optimal management when fish stocks are low. We show that as long as it is not
optimal to let the stock become extinct and the marginal benefit of harvesting is bounded
below infinity for all harvest levels, there will always be an interval with low stock sizes
where it is optimal not to harvest. This result does not depend on any assumption that
marginal harvesting cost per unit increases with decreasing stock size. We then prove that
under weak conditions the shadow price on the fish stock always goes to infinity as the
stock approaches zero. The results are generalized to a particular class of age structured
models.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Clark (1973) and Clark andMunro (1975) presented dynamic fishery models that gave the theory of renewable resources a
proper capital theoretic foundation. The basic fishery model entails one control variable, one state variable; the planning
horizon is infinite time and the problem is autonomous. When the profit function is nonlinear in the control variable and
there is an optimal path to the steady state, this steady state should be approached gradually along two saddle paths, or stable
manifolds (see, e.g., Kamien and Schwarz, 1991). The standard model has usually applied an ecological lumped parameter
model of the form _x ¼ GðxÞ � hwhere x is the size of the fish stock in biomass and h is the harvest rate. It has been recognized
for a long time that optimal extinction in thesemodels depends on the relativemagnitude of the interest rate and the intrinsic
growth rate, G0ð0Þ, in addition to the unit cost of harvesting (Clark, 1973; Cropper et al., 1979). Although this model is well
understood, some wrinkles remain to be ironed out. One is the question of harvest levels at low stock levels, where it is has
been known that in some versions of the standard fisheries model it is optimal to set harvest equal to zero for low stock levels.
This is commonly attributed to either the bang-bang nature of problems that are linear in the control, Clark andMunro (1975)
or an assumption that harvest costs are stock dependent and that the marginal cost of harvest becomes infinite when the
stock approaches zero, (Leung and Wang, 1976; Lewis and Schmalensee, 1977).1
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1 On the other hand, if the marginal benefit of harvesting goes to infinity as the harvest rate goes to zero, typically in models with some type of iso-elastic
instantaneous utility, then if stocks are strictly positive it is always optimal with some strictly positive harvest rate, Levhari and Mirman (1980). Whether
extinguishing the fish stock is optimal will also in this case depend on the relationship between the discount rate and the intrinsic growth rate.
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In what follows, we show that these assumptions are not necessary. In order to properly analyse optimal harvest levels at
low stocks, it is crucial to examine the behaviour of the shadow price at low stock levels. We argue below that analysing the
properties of the shadow price is equivalent to analysing the stable saddle path in a phase diagram in stock/shadow price
space. If we interpret the stable saddle path as a function that maps the state variable into the shadow price it is evident that
the stable saddle path is in fact the derivative of the value function. We then demonstrate that the shadow price of a
renewable resource goes to infinity if the growth in the resource is zero at zero stock. This fact has remarkably not been noted
in the literature, except for the case where revenue is a linear function of harvest levels, Nævdal (2016). In his milestone book
on natural resource economics Colin Clark stays silent on this. He draws the basic fishery model phase-diagram in the stocke

harvest space, but the saddle path is not drawn for low harvest levels, Clark (1991, p. 99) and also Conrad and Clark (1987, p.
56). In the well-recognized book by Leonard and Long (1992) on optimization and dynamic control models, the saddle path
illustrating a schooling fishery is only indicated for a restricted set of values in the stock e shadow price space (Leonard and
Long (1992, p. 296) and is not drawn for values of the stock close to zero.

In Section 2 below, we first formulate and analyse our baseline model exemplified by a schooling fishery where the net
harvest benefit is a concave function of harvest. In Section 3, we next apply fast/slow-dynamics and show that the results
apply to at least some age structured models. Section 4 concludes the paper with a discussion of the results and relating them
to the concept of harvest control rules.

2. The canonical fisheries model

The following is the basic version of the fisheries model where a schooling fishery is considered. In a schooling fishery
there are no stock dependent harvest costs. We assume that the net instantaneous benefits from harvesting is given by a
continuous and strictly concave function D(h) with D(0)¼ 0, and where D0ðhÞ > 0 over an interval [0, hmax] where hmax�∞.
For notational convenience we denote D0ðhÞ as d(h). Note that strict concavity of D(h) ensures that d(h) has an inverse defined
for all positive values of its argument. In order to ensure that our results are not the result of assuming infinite derivatives of
D(h), we postulate that 0< d(0)<∞ which is a crucial assumption driving our results. The natural growth function G(x) is
taken to be strictly concave and satisfy G(0)¼ 0, G0ðxÞ>0 over some interval [0,x ) and G0ðxÞ<0 for x > x. We assume that the
intrinsic growth rate exceeds that of the discount rate, G0ð0Þ > r, which is reasonable for most fish species It is also assumed
that there is some number K > x, denoted carrying capacity, such that G(K)¼ 0. The specification of G(x) is in line with
standard growth functions such as the logistic one, which is used in our numerical illustrations. The assumptions lead to the
following optimization problem:

Vðxð0ÞÞ ¼ max
h�0

Z∞
0

DðhÞe�rtdt subject to _x ¼ GðxÞ � h; and xð0Þ given; (1)

where h � 0 is the harvest and x � 0 is the size of the fish stock and r � 0 is the discount rate. The current value Hamiltonian
for this problem is:

H ¼ DðhÞ þ mðGðxÞ � hÞ: (2)

Here m is the co-state variable. The Hamiltonian is concave in (h, x), so sufficiency theorems such as Theorem 9.11.1 in
Sydsæter et al. (2005) are fulfilled. The necessary conditions become:

vH
vh

¼ dðhÞ � m � 0 ð¼ 0 if h>0Þ (3)

and

_m ¼ ðr� G0ðxÞÞm: (4)

(3) follows from maximising the Hamiltonian with respect to h, when H is a concave function of h. Transversality con-
ditions must also be checked. By assumption there exist a steady state and we show below that the optimal path converges to
this steady state from any xð0Þ>0 . It is straightforward to check that limt/∞mðtÞðyðtÞ � xðtÞÞe�rt � 0where x(t) is the optimal
state variable and y(t) all other admissible functions. As y(t), x(t) and m(t) are all finite, this expression goes to zero. The
transversality condition given in Theorem 9.11.1 in Sydsæter et al. (2005) therefore holds andwith the rest of our assumptions
implies that sufficient conditions for optimality hold. Control condition (3) implies that d (0)< m 0 h¼ 0 and condition (3)
may be rewritten as:

h ¼ max
�
0; d�1ðmÞ

�
: (5)

Inserting Eq. (5) into the natural growth equation yields next:
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