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a b s t r a c t

When solving partial differential equations numerically, usually a high order spatial discretization is
needed. Model order reduction (MOR) techniques are often used to reduce the order of spatially-
discretized systems and hence reduce computational complexity. A particular MOR technique to obtain
a reduced order model (ROM) is balanced truncation (BT). However, if one aims at finding a good ROM
on a certain finite time interval only, time-limited BT (TLBT) can be a more accurate alternative. So far,
no error bound on TLBT has been proved. In this paper, we close this gap in the theory by providing an
output error bound for TLBT with two different representations. The performance of the error bound is
then shown in several numerical experiments.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let (A, B, C) ∈ Rn×n
× Rn×m

× Rp×m be a realization of a linear,
time-invariant system

Σ : ẋ(t) = Ax(t) + Bu(t), x(0) = 0, y(t) = Cx(t) (1)

and assume that A is Hurwitz which implies (1) is asymptotically
stable. The Hurwitz property is classified by ℜ(λ) < 0 for all
λ ∈ Λ(A), where Λ(·) denotes the spectrum of a matrix.

The infinite reachability and observability Gramians

P∞ =

∫
∞

0
eAsBBTeA

T sds, Q∞ =

∫
∞

0
eA

T sCTCeAsds

of (A, B, C) solve the Lyapunov equations

AP∞ + P∞AT
+ BBT

= 0, ATQ∞ + Q∞AT
+ CTC = 0. (2)

The first ingredient of balanced truncation [1] (BT) is to simul-
taneously diagonalize both Gramians through congruence trans-
formations ŜP∞ŜT = Ŝ−TQ∞Ŝ−1

= Σ∞ which gives a balanced
realization (ŜAŜ−1, ŜB, CŜ−1), where Σ∞ is diagonal and contains
the Hankel singular values σj (HSVs), i.e., the square roots of the
eigenvalues of P∞Q∞. The HSVs σj are typically assumed to be
ordered in a non-increasing fashion. In the second step the reduced
order model Σr is obtained by keeping only the r × r upper
left block of ŜAŜ−1 and the associated parts of ŜB, CŜ−1, i.e., the
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smallest n − r HSVs are removed from the system. With Cholesky
factorizations P∞ = LPLTP , Q∞ = LQ LTQ , and the singular value
decomposition (SVD) XΣ∞Y T

= LTQ LP , the balancing transforma-

tion is given by Ŝ = Σ
−

1
2

∞ XT LTQ and Ŝ−1
= LPYΣ

−
1
2

∞ , see, e.g., [2].
Moreover, the resulting reduced systemΣr is asymptotically stable
and satisfies the H∞ error bound [3]

∥Σ − Σr∥H∞
≤ 2(σr+1 + · · · + σn). (3)

Once the SVD is computed, (3) can be used to adaptively adjust the
reduced order r . A generalized H∞-error bound for BT has been
proved in [4,5], where linear stochastic systems are investigated.

The matrix of truncated HSVs Σ2 = diag(σr+1, . . . , σn) can be
used to express the H2 error bound [2]. It is represented by

∥Σ − Σr∥
2
H2

≤ tr(Σ2(B2BT
2 + 2P∞,M,2AT

21)), (4)

where B2 is the matrix of the last n − r rows of ŜB, A21 is the left
lower (n−r)×r block of ŜAŜ−1 and P∞,M,2 are the last n−r rows of
the mixed Gramian P∞,M = Ŝ

∫
∞

0 eAsBBT
1e

AT11sds. The bound in (4)
has already been extended to stochastic systems in a more general
form [6–8].

In [9] Gawronski and Juang restricted balanced truncation to a
finite time interval [0, T̄ ], T̄ < ∞, by introducing the time-limited
reachability and observability Gramians

PT̄ :=

∫ T̄

0
eAsBBTeA

T sds, QT̄ =

∫ T̄

0
eA

T sCTCeAsds. (5)
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It is easy to show that PT̄ , QT̄ solve the Lyapunov equations

APT̄ + PT̄A
T

+ BBT
− FT̄ F

T
T̄ = 0, (6a)

ATQT̄ + QT̄A
T

+ CTC − GT
T̄GT̄ = 0, (6b)

where Gt := CeAt and Ft := eAtB, t ∈ [0, T̄ ]. Time-limited balanced
truncation (TLBT) is then carried out by using the Cholesky factors
of PT̄ , QT̄ instead of P∞,Q∞ to construct the balancing transforma-
tion which in this case is denoted by S. This transformation simul-
taneously diagonalizes PT̄ , QT̄ , i.e., SPT̄ S

T
= S−TQT̄ S

−1
= ΣT̄ and

is, thus, referred to as time-limited balancing transformation. The
values inΣT̄ are referred to as time-limited singular values and are,
similar to the HSVs, invariant under state-space transformations.
Because of the alteredGramian definitions, TLBT does generally not
preserve stability and there is noH∞ error bound as in unrestricted
BT.

The main contribution of this paper is an output error bound
for TLBT. It leads to (4) if T̄ → ∞. We provide two representations
of this bound. The first one can be used for practical computations
and is, hence, an important tool to assess the obtained accuracy.
The second representation is not appropriate for computing the
bound but it shows that, similar to BT, the time-limited singular
values deliver an alternative criterion to find a suitable reduced
order dimension r . We conclude this paper by conducting several
numerical experiments which indicate that the time-limited error
bound is tight.

2. Output error bounds for time-limited balanced truncation

Let S be the time-limited balancing transformation. We parti-
tion the balanced realization (SAS−1, SB, CS−1) as follows:

SAS−1
=

[
A11 A12
A21 A22

]
, SB =

[
B1
B2

]
, CS−1

=
[
C1 C2

]
,

where A11 ∈ Rr×r , B1 ∈ Rr×m, C1 ∈ Rp×r and the other blocks of
appropriate dimensions. Furthermore, we introduce

SFT̄ =

[
FT̄ ,1
FT̄ ,2

]
, GT̄ S

−1
=

[
GT̄ ,1 GT̄ ,2

]
, ΣT̄ =

[
ΣT̄ ,1

ΣT̄ ,2

]
.

We consider the corresponding Lyapunov equations in partitioned
form:[
A11 A12
A21 A22

] [
ΣT̄ ,1

ΣT̄ ,2

]
+

[
ΣT̄ ,1

ΣT̄ ,2

][
AT
11 AT

21
AT
12 AT

22

]
(7)

= −

[
B1BT

1 B1BT
2

B2BT
1 B2BT

2

]
+

[
FT̄ ,1F

T
T̄ ,1 FT̄ ,1F

T
T̄ ,2

FT̄ ,2F
T
T̄ ,1 FT̄ ,2F

T
T̄ ,2

]
,

[
AT
11 AT

21
AT
12 AT

22

][
ΣT̄ ,1

ΣT̄ ,2

]
+

[
ΣT̄ ,1

ΣT̄ ,2

] [
A11 A12
A21 A22

]
(8)

= −

[
CT
1 C1 CT

1 C2

CT
2 C1 CT

2 C2

]
+

[
GT
T̄ ,1GT̄ ,1 GT

T̄ ,1GT̄ ,2

GT
T̄ ,2GT̄ ,1 GT

T̄ ,2GT̄ ,2

]
.

The TLBT reduced system that approximates (1) is given by

ẋr (t) = A11xr (t) + B1u(t), xr (0) = 0, yr (t) = C1xr (t).

The goal of this section is to find a bound for the error between y
and yr . Since we have zero initial conditions for both the reduced
and the full system, we have the following representations for the
outputs

y(t) = Cx(t) = C
∫ t

0
eA(t−s)Bu(s)ds,

yr (t) = C1xr (t) = C1

∫ t

0
eA11(t−s)B1u(s)ds,

where t ∈ [0, T̄ ]. To find a first representation for the error
bound, arguments from [6–8] are used, where a generalized H2
error bound for stochastic systems has been derived. Some easy
rearrangements yield a first error estimate

∥y(t) − yr (t)∥2

=

C ∫ t

0
eA(t−s)Bu(s)ds − C1

∫ t

0
eA11(t−s)B1u(s)ds


2

≤

∫ t

0

(
CeA(t−s)B − C1eA11(t−s)B1

)
u(s)


2 ds

≤

∫ t

0

CeA(t−s)B − C1eA11(t−s)B1

F ∥u(s)∥2 ds.

By the Cauchy Schwarz inequality it holds that

∥y(t) − yr (t)∥2

≤

(∫ t

0

CeA(t−s)B − C1eA11(t−s)B1
2
Fds

) 1
2
(∫ t

0
∥u(s)∥2

2ds
) 1

2

.

Using substitution, the definition of the Frobenius norm and the
linearity of the integral, we obtain∫ t

0

CeA(t−s)B − C1eA11(t−s)B1
2
Fds

=

∫ t

0

CeAsB − C1eA11sB1
2
Fds

≤

∫ T̄

0

CeAsB − C1eA11sB1
2
Fds

=

∫ T̄

0
tr

(
CeAsBBTeA

T sCT
)
ds

+

∫ T̄

0
tr

(
C1eA11sB1BT

1e
AT11sCT

1

)
ds

− 2
∫ T̄

0
tr

(
CeAsBBT

1e
AT11sCT

1

)
ds

= tr
(
CPT̄C

T )
+ tr

(
C1PT̄ ,rC

T
1

)
− 2 tr

(
CPT̄ ,MCT

1

)
,

where PT̄ :=
∫ T̄
0 eAsBBTeA

T sds, PT̄ ,r :=
∫ T̄
0 eA11sB1BT

1e
AT11sds and

PT̄ ,M :=
∫ T̄
0 eAsBBT

1e
AT11sds. Matrix-valued integrals of this form can

under some conditions be expressed as unique solutions of matrix
equations.

Lemma 2.1. Let A1 ∈ Rn×n, A2 ∈ Rr×r with Λ(A1) ∩ −Λ(A2) = ∅

and B1 ∈ Rn×m, B2 ∈ Rr×m. Then,

X =

∫ T̄

0
eA1sB1BT

2e
AT2 sds

solves the Sylvester equation

A1X + XAT
2 = −B1BT

2 + eA1 T̄B1BT
2e

AT2 T̄ .

Proof. The integral is equivalent to

vec (X) =

∫ T̄

0
vec

(
eA1sB1BT

2e
AT2 s

)
ds

=

∫ T̄

0
eA2s ⊗ eA1sds vec

(
B1BT

2

)
=

∫ T̄

0
e(Ir⊗A1+A2⊗In)sds vec

(
B1BT

2

)
,
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