Contents lists available at ScienceDirect

Chemical Engineering & Processing: Process Intensification

journal homepage: www.elsevier.com/locate/cep

Extension and evaluation of a macroscopic model for syngas-fueled chemical looping combustion

Daofeng Mei^{a,b,*}, Alberto Abad^c, Haibo Zhao^d, Shuiping Yan^{a,b}, Baowen Wang^e, Qiaoxia Yuan^{a,b}

^a Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture, Wuhan 430070, China

^b College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

^c Department of Energy and Environment, Instituto de Carboquímica-ICB-CSIC, Zaragoza 50018, Spain

^d State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

^e College of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

ARTICLE INFO

Keywords: CO₂ capture Chemical looping combustion Syngas Macroscopic fluidized bed model Cu-based oxygen carrier Shrinking core model

ABSTRACT

Syngas-fueled Chemical Looping Combustion (syngas-CLC) which can be integrated with ex-situ gasification of coal has advantages over the direct use of coal in CLC: (*i*) no requirement of carbon stripper, (*ii*) no interaction of oxygen carrier with coal ash, (*iii*) no loss of oxygen carrier with the draining stream of ash. Few works on simulation of syngas-CLC were performed, although experimental investigations were extensively carried out. In this work, a macroscopic fuel reactor model is extended to a lab-scale 500 W_{th} reactor. The model based on fluid dynamics, mass balance and reduction kinetics is solved with MATLAB^{*} codes and validated against experiments. Influences of various operation parameters are evaluated to study the flexibility of this model. It is shown that the model can give satisfactory predictions for fuel reactor of a syngas-CLC system, independent on the operation conditions. Variations of syngas composition, temperature, solids circulation and oxygen carrier inventory show different effects on flue gas composition and combustion efficiency. After thorough simulation, a region for a combustion efficiency of $\eta_C = 99.9\%$ is proposed, with which the optimized conditions for the 500 W_{th} reactor are established. An oxygen carrier inventory as low as 50 kg/MW_{th} can assure the complete syngas

1. Introduction

The dependence on fossil fuel for energy production cannot be substituted by other alternatives including renewable energies before they become mature to supply most of the demanded energy [1]. CO₂ emission during the utilization of fossil fuels is considered as one of the major contributors to global warming, thus different strategies for CO₂ removal are developing [2]. Among them, Chemical Looping Combustion (CLC) has been suggested among the most promising technologies for low-cost CO₂ capture [3]. CLC concept is based on the rationale of pure CO₂ generation patented by Lewis and Gilliland [4], which was first proposed by Ishida et al. [5]. In CLC, the conventional combustion is split into two steps: oxygen required for fuel combustion is provided by a solid oxygen carrier, a type of metal oxide; and then air is used to regenerate the oxygen carrier. The most common configuration for CLC is realized by circulating oxygen carrier particles inside interconnected fluidized bed reactors [6]. In the fuel reactor, fuel (CnH2m) combusts with lattice oxygen of oxygen carrier (MeO_x) , while the oxygen carrier

is reduced to MeO_{x-1} as shown in reaction R1. In the air reactor, the previously reduced oxygen carrier MeO_{x-1} is oxidized back to its original form MeO_x by reacting with gaseous oxygen of air via Reaction (R2). It can be seen that CO₂ can be easily separated in Reaction (R1) after a simple condensation of H₂O steam. In this sense, CLC technology provides a prospective technical pathway to address the increase of global CO₂ emission.

$C_nH_{2m} + (2n + m)MeO_x \rightarrow (2n + m)MeO_{x-1} + nCO_2 + m$

$$MeO_{x-1} + 1/2O_2 \rightarrow MeO_x$$
 (R2)

For the application to coal combustion, CLC technology was extensively investigated during the past decades [7,8]. Due to the extremely low rate of solid-solid reaction between coal and oxygen carrier particles in fluidization condition [9], several technologies including syngas-fueled Chemical Looping Combustion (syngas-CLC) [10,11], insitu Gasification Chemical Looping Combustion (*iG*-CLC) [12] and Chemical Looping with Oxygen Uncoupling (CLOU) [13] were proposed. Syngas-CLC has several advantages over *iG*-CLC and CLOU,

* Corresponding author.

E-mail address: dmei@mail.hzau.edu.cn (D. Mei).

https://doi.org/10.1016/j.cep.2018.10.003

Received 8 May 2018; Received in revised form 3 October 2018; Accepted 3 October 2018 Available online 06 October 2018 0255-2701/ © 2018 Elsevier B.V. All rights reserved.

Nomenclatures

- Decay factor of solids concentration in the freeboard а
- Archimedes number Ar
- Stoichiometric factor for the reaction of CuO and compo b_i nent i (i = CO or H₂) in the syngas, mol CuO per mol of gas
- Concentration of gas component at the active surface of $C_{\rm ex}$ oxygen carrier particle, $mol m^{-3}$
- Concentration of fuel component i (i = CO or H₂), mol C_i m^{-3}
- Concentration of component i ($i = CO, CO_2, H_2$ or H_2O) in $C_{i,i}$ bubble (i = b), emulsion (i = e) or freeboard (i = f), mol m⁻
- Solids concentration, kg m $^{-3}$ $C_{\rm s}$
- Solids concentration at the upper limit of the dense bed, $C_{\rm s,b}$ kg m⁻
- $C_{\rm z}$ Bulk gas concentration at height z of the fuel reactor, $mol\,m^{-3}$
- Diameter of bubble (j = b) or oxygen carrier particle d_i (j = p), m
- Diffusivity of gas component i ($i = CO, CO_2, H_2$ or H_2O), $D_{q,i}$ $m^{2}s^{-1}$
- D_r Inner diameter of the fuel reactor, m
- Activation energy for the reduction of oxygen carrier by Ei component *i* (*i* = CO or H₂) in the syngas, $J \mod^{-1}$
- Fexe Excessive gas molar flow over minimum fluidization, $mol s^{-1}$
- Fi Gas molar flow at the inlet (j = in) or height z (j = z) of fuel reactor or caused by the WGS reaction (j = WGS), $mol s^{-1}$
- $F_{j,i}$ Molar flow of component i ($i = CO, CO_2, H_2$ or H_2O) in bubble (i = b), emulsion (i = e) or freeboard (i = f), $mol s^{-}$
- Acceleration f gravity, $9.8 \,\mathrm{m \, s^{-2}}$ g
- Height of dense bed (j = b) or the entire fuel reactor Hi (j = r), m
- Coefficient for gas exchange between bubble and emul $k_{\rm be}$ sion, s^{-1}
- Mass transfer coefficient of component i ($i = CO \text{ or } H_2$) in k_{g,i} the gas film surrounding oxygen carrier particles, m s⁻

Rate constant of the reaction between component *i* k_i $(i = CO \text{ or } H_2)$ and oxygen carrier, $mol^{1-n}m^{3n-2}s^{-1}$

Pre-exponential factor of the rate constant for the reaction $k_{0,i}$ between component i (i = CO or H₂) and oxygen carrier, $mol^{1-n}m^{3n-2}s^{-1}$

K_{WGS,eq} Equilibrium constant for WGS reaction

- Instantaneous mass of oxygen carrier, kg т
- Solids inventory per MW_{th} fuel, kg MW_{th} $m_{\rm FR}$
- Mass of fully oxidized (j = ox) or reduced (j = red) oxygen m carrier, or the bed mass of oxygen carrier in the fuel reactor (i = s), kg

- 1

- $M_{\rm O}$ Molar weight of oxygen carrier, kg mol $^{-1}$ Solids circulation rate, kg h^{-1} ṁs
- Reaction order n
- Nnz Number of nozzle in the gas distributor of fuel reactor
- Pressure at the outlet of fuel reactor, Pa р
- $P_{\rm th}$ Thermal power, W_{th}
- Re_D Reynolds number

Universal gas constant, 8.314 J mol⁻¹ K⁻¹ Rg

namely: no requirement for the carbon stripper, no interaction of oxygen carrier with coal ash and no loss of oxygen carrier with the draining stream of ash. In this sense, syngas-CLC is simpler and more straightforward to be implemented for energy generation from coal.

Radius of CuO grain in the oxygen carrier, m $r_{\rm g,CuO}$

- Average reaction rate of gas component i (i = CO or H₂), $(-\bar{r}_{g,i})$ $mol m^{-3} s^{-1}$
- $(-\bar{r}_{g,i})_j$ Average reaction rate of gas component i (i = CO or H₂) in emulsion (*i* = e) or freeboard (*i* = f), mol m⁻³ s⁻¹ Oxygen transport capacity

R_{OC}

- Average reaction rate of oxygen carrier particles during $(-\bar{r}_{s,i})$ the oxidation of component i $(i = CO \text{ or } H_2)$ in the syngas, $mol m^{-3} s^{-1}$
- Sc Schmidt number
- Reaction time, s t
- Т Temperature, K
- Mean residence time of oxygen carrier particles in fuel t_mr reactor, s
- Velocity corresponding to total gas flow (j = 0), minimum u_i fluidization flow (j = mf), through flow (j = tf) or visible bubble flow (i = vis), m s⁻¹
- V Fuel reactor volume, m³
- Molar volume of CuO grain in the oxygen carrier, V_{M.CuO} $m^3 mol^{-1}$
- Molar fraction of component i ($i = CO, CO_2, H_2$ or H_2O) in $(x_i)_i$ the gas stream at the inlet (j = in) or height z (j = z) of the fuel reactor
- Oxidation conversion of oxygen carrier at the inlet of fuel $X_{o,in}$ reactor
- $X_{\rm s}$ Solids conversion during reduction
- Molar fraction of component i ($i = CO, CO_2, H_2$ or H_2O) in $y_{e,i}$ the excessive gas over minimum fluidization z
- Axial position in the fuel reactor, m

Greek Symbols

Δp	Pressure drop over fuel reactor, Pa
$\delta_{ m b}$	Bubble fraction in the dense bed
$\varepsilon_{\rm mf}$	Bed porosity at minimum fluidization
$\varepsilon_{\rm s}$	Solids fraction in fuel reactor
$\varepsilon_{\rm z}$	Bed porosity at position z of the fuel reactor
$\eta_{\rm C}$	Combustion efficiency
ξg-s	Contact efficiency between gas and solids in freeboard
ρ _{m,p}	Molar density of CuO in the oxygen carrier particles,
	$\rho_{m,p} = y_{CuO}/V_{MCuO}$, being y_{CuO} the volume fraction of CuO
	in the oxygen carrier, $mol m^{-3}$
ρ _p	Particle density, kg m $^{-3}$
τ_i	Time required for complete reduction of oxygen carrier by
	gas i (i = CO, H ₂ or syn for syngas), s
ψ	Ratio of $u_{\rm vis}$ and $(u_{\rm vis} + u_{\rm tf})$
ϕ	Oxygen carrier-to-fuel ratio
Acronyms	

CFD	Computational fluid dynamics	
CLC	Chemical looping combustion	
IGCC	Integrated gasification combined cycle	
syngas-CLC Syngas-fueled chemical looping combustion		
SCM	Shrinking core model	
TGA	Thermogravimetric analyzer	
WGS	Water-gas shift	
XRD	X-ray diffraction	

Syngas-CLC can be easily integrated with Integrated Gasification Combined Cycle (IGCC) process [10,14]. According to the simulations of Jin et al. [10] and Wolf et al. [15], system efficiency of IGCC process can be improved by 5-10% if the conventional CO₂ capture technology

Download English Version:

https://daneshyari.com/en/article/11023654

Download Persian Version:

https://daneshyari.com/article/11023654

Daneshyari.com