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A B S T R A C T

Previously, a predictive model was developed to identify optimal blends of expensive high-quality and cheaper
low-quality feedstocks for a given geographical location that can deliver high sugar yields. In this study, the
optimal process conditions were tested for application at commercially-relevant higher biomass loadings. We
observed lower sugar yields but 100% conversion to ethanol from a blend that contained only 20% high-quality
feedstock. The impact of applying this predictive model simultaneously with least cost formulation model for a
biorefinery location outside of the US Corn Belt in Lee County, Florida was investigated. A blend ratio of 0.30 EC,
0.45 SG, and 0.25 CS in Lee County was necessary to produce sugars at high yields and ethanol at a capacity of
50 MMGY. This work demonstrates utility in applying predictive model and LCF to reduce feedstock costs and
supply chain risks while optimizing for product yields.
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1. Introduction

Bio-based manufacturing in the United States, thus far, has relied
heavily on optimizing processing conditions for a single feedstock
source, such as corn stover. This approach limits establishing bior-
efineries in geographical areas that have access to substantial lig-
nocellulosic biomass, but from varying feedstock sources. For example,
more than 1 million dry tons of orchard and vineyard prunings were
available in Florida for biofuel production in 2016 (Langholtz et al.,
2016). INEOS Bio was the first commercial-scale cellulosic ethanol
plant established in 2013 to convert Florida’s different sources of
feedstocks including vegetative wastes, agricultural wastes, and muni-
cipal solid wastes (Jose and Bhaskar, 2015; Lubowski et al., 2002). The
Idaho National Laboratory (INL) has been developing a Least Cost
Formulation (LCF) model to identify geographical areas across the
United States that present such increased availability of low-cost feed-
stocks and thereby opportunities of biomass blending (Ray et al., 2017;
Sun et al., 2015; Williams et al., 2016). Researchers at the Advanced
Biofuels Process Development Unit (ABPDU), Lawrence Berkeley Na-
tional Laboratory (LBNL) further investigated recommendations from
LCF, but from a bio-processing point-of-view, by optimizing feedstock
ratios in blends and the associated conversion conditions to achieve
high yields and/or lower costs. A collaboration among researchers from
ABPDU, INL, and Sandia National Laboratories (SNL) helped develop a
predictive model that could rapidly identify optimal feedstock ratios in
tandem with optimal deconstruction parameters in a given geographic
area (Narani et al., 2017).

The geographical area chosen for this predictive model development
was Lee County in Florida, primarily because it is situated further away
from the Corn Belt and has access to an abundant but recalcitrant
feedstock, energy cane (EC). Per LCF, switchgrass (SG) was also abun-
dantly available in the region and could be easily incorporated into a
blend. Corn stover (CS) was chosen to also be a part of the blends as it
was assumed it to be representative of a high-quality feedstock in this
study. The singular feedstocks and biomass blends were pretreated with
either dilute acid or dilute alkali or ionic liquid (IL) followed by en-
zymatic hydrolysis and then measured for sugar yields. When pre-
treated with dilute alkali, we observed that a 1:9 biomass blend of EC
and CS led to glucose yield of 71.22% (of theoretical). This yield was
similar to that from CS alone, at 74.6% (of theoretical), making the
blend more preferable in lowering feedstock costs for lignocellulosic
sugar production in a biorefinery (Narani et al., 2017). Similarly, a 0.4:
0.4: 0.2 blend of EC, SG, and CS led to a sugar yield of 62% (of theo-
retical), higher than those observed from EC or SG alone, at 31.46% and
56.78% (of theoretical). Based on these and other results, we developed
a predictive model and presented it through an interactive ternary chart
that enabled rapid and simultaneous optimization of biomass blends
and associated pretreatment conditions. The model itself was validated
by independent studies. The ability to instantaneously access predic-
tions from a valid model that can substantially reduce biomass costs
also reduces supply chain risks for a biorefinery. The petroleum in-
dustry has long been utilizing such models to be able to promptly tune
their processing parameters per feedstock variability (Hsu and
Robinson, 2007; Hu et al., 2002).

This predictive model was generated from deconstruction studies
conducted only at a low biomass loading (LBL); 10% (w/w) dry un-
treated biomass in slurry during pretreatment and approximately 4%
(w/w) dry untreated biomass in hydrolysis slurry. Many lab-scale de-
construction studies are conducted at LBL (Li et al., 2010; Lloyd and
Wyman, 2005; Uppugundla et al., 2014; Wyman et al., 2005a; Wyman
et al., 2005b), but for this model to be useful in real-world scenarios, it
is necessary that the model’s predictions are applicable in commercial
scale setting for bio-based manufacturing (Li et al., 2013; Sadhukhan
et al., 2014; Tao et al., 2014). High biomass loading (HBL) of 30% (w/
w) during pretreatment and 20% (w/w) enzymatic hydrolysis are
commonly applied in commercial scale bio-based manufacturing

(Humbird et al., 2011). Lower water concentration and consequently
reduced heat capacity and reactor volume requirements coupled with
higher sugar concentrations in hydrolysates are necessary for eco-
nomical operation of a biorefinery (Humbird et al., 2011). To ensure
that this model is applicable in real-world scenarios, in this study, some
of the model’s predictions were tested at higher biomass loading (HBL)
of 30% (w/w) during pretreatment and 12% (w/w) enzymatic hydro-
lysis. Further, the quality of sugars in these HBL hydrolysates was tested
through fermentation to ethanol.

The 0.4:0.4:0.2 EC, SG, and CS blend, comprised mostly of local
feedstocks – EC and SG, will have lowered feedstock transportation
costs. These lower upfront costs could possibly negate the lower sugar
yield of 62% (of theoretical) from this blend, compared to 74.6% (of
theoretical) from CS. To investigate this possibility, which compares
feedstock quality and transportation costs, in this study, the predictions
from this model were integrated with those from LCF by performing an
impact analysis. Without such an analysis, we are unable to determine
the value of employing the models. This manuscript also briefly probes
process economic implications of these models by simulating the results
from downstream fermentation studies into a techno-economic analysis
(TEA) model. Performing HBL deconstruction studies, testing hydro-
lysates in fermentations, integrating LCF and predictive model, and
performing TEA was necessary to establish a robust modeling platform
for commercial-scale bio-based manufacturing.

2. Materials and methods

2.1. Feedstocks and high solid loading pretreatment

Information on feedstocks used in this study was provided in Narani
et al. (2017). Experimental details associated with LBL pretreatment
and enzymatic hydrolysis conducted for model development were also
provided in Narani et al. (2017). The 10 best sugar yielding feedstock
and treatment combinations observed during model development, five
each with dilute alkali and IL pretreatment catalysts, were applied for
HBL pretreatments and enzymatic hydrolysis; treatment conditions and
biomass blends are listed in Table 1. Reaction temperatures were scaled
for each pretreatment: Dilute alkali (1–100%) 55–120 °C, IL (1–100%)
120–160 °C. as per Narani et al. (2017). Similarly, reaction times were
also scaled: Dilute alkali (1–100%) 1–24 h, IL (1–100%) 1–3 h (Narani
et al., 2017).

HBL was administered at 30% (w/w) untreated dry biomass in
slurry during pretreatment. HBL alkali slurries were prepared by
mixing, in 250mL Pyrex Erlenmeyer flasks, 30 g of dry biomass with
70 g of water containing 1% (w/w) sodium hydroxide. All pretreat-
ments were conducted by placing the flasks either in an autoclave
(Primus Sterilizer, Omaha NE, Model# PSS5-G.1-MSSD) to reach 120 °C
or a convection oven for the two other reaction temperatures of 65 and
107 °C (Binder, Bohemia, NY). Enzymatic hydrolysis was then per-
formed on alkali pretreated residual solids without any washing, but
diluted to 2.5× on mass basis, thereby making solids loading in the
hydrolysis step equivalent to 12% (w/w) untreated dry biomass. The
hydrolysis procedure and the ratio of other reagents were the same as
described in Narani et al. (2017), except hydrolysis was conducted in
larger 250mL Erlenmeyer flasks. An enzyme loading of 11mg protein/
g glucan in untreated biomass, same as in Narani et al. (2017), was
administered.

IL biomass slurries at 30% (w/w) were prepared by mixing 30 g of
dry biomass with 70 g of 1-ethyl-3-methylimidazolium acetate
(EmimAcetate or [C2mim][oAc]) in pure form in a 500mL Globe re-
actor (Syrris, UK). The reactor was stirred at 200 rpm with overhead
anchor impeller that held a shaft with blades made of
Polytetrafluoroethylene. Once the slurry appeared homogeneous, oil
from an oil bath was circulated in the reactor jacket to maintain the
slurry at desired pretreatment reaction temperature. Julabo tempera-
ture control unit (Allentown, PA) was used to regulate the temperature
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