Accepted Manuscript

A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions

Fatiha Lassouane, Hamid Aït-Amar, Saïd Amrani, Susana Rodriguez-Couto

PII: S0960-8524(18)31382-8

DOI: https://doi.org/10.1016/j.biortech.2018.09.129

Reference: BITE 20545

To appear in: Bioresource Technology

Received Date: 1 August 2018
Revised Date: 24 September 2018
Accepted Date: 25 September 2018

Please cite this article as: Lassouane, F., Aït-Amar, H., Amrani, S., Rodriguez-Couto, S., A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.09.129

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A promising laccase immobilization approach for Bisphenol A removal from

aqueous solutions

Fatiha Lassouane^{1, 2*}, Hamid Aït-Amar¹, Saïd Amrani³, Susana Rodriguez-Couto^{4, 5, 6*}

¹Université des Sciences et de la Technologie Houari Boumediene (USTHB),

Laboratoire des Sciences du Génie des Procédés Industriels, Faculté de Génie

Mécanique et de Génie des Procédés, BP 32, El-Alia 16111, Algiers, Algeria.

²Centre de Développement des Energies Renouvelables, CDER, 16340, Algiers,

Algeria.

³Université des Sciences et de la Technologie Houari Boumediene (USTHB),

Laboratoire de Biologie des Sols, Faculté des Sciences Biologiques, El-Alia 16111,

Algiers, Algeria.

⁴Ceit-IK4, Water and Health Division, Paseo Manuel de Lardizábal 15, 20018 San

Sebastian, Spain.

⁵Universidad de Navarra, Tecnun, Paseo Manuel de Lardizábal 13, 20018, San

Sebastian, Spain.

⁶IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao,

Spain.

Abstract

The immobilization of crude laccase from *Trametes pubescens* by glutaraldehyde

crosslinking prior to entrapment into Ca-alginate beads increased the immobilization

yield by 30% and reduced the leaking by 7-fold compared to the immobilization with no

crosslinking. The performance of the newly developed biocatalyst to degrade Bisphenol

A (BPA) from aqueous solutions was tested. Thus, operating at optimal conditions (i.e.

pH 5, 30°C, 20 mg L⁻¹ BPA and 1500 U L⁻¹ laccase), a BPA removal higher than 99%

in 2 h was achieved. This value is higher than those reported to date for BPA removal

¹*Corresponding authors:

Susana Rodriguez-Couto

E-mail: <u>srodriguez@ceit.es</u>; Tel.: +34 943212800; Fax: +34 943 213076

Fatiha Lassouane

E-mail: flassouane@usthb.dz

Download English Version:

https://daneshyari.com/en/article/11023685

Download Persian Version:

https://daneshyari.com/article/11023685

<u>Daneshyari.com</u>