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a b s t r a c t 

Independent Component Analyzers Mixture Models (ICAMM) are versatile and general models for a large 

variety of probability density functions. In this paper we assume ICAMM to derive new MAP and LMSE 

estimators. The first one (MAP-ICAMM) is obtained by an iterative gradient algorithm, while the second 

(LMSE-ICAMM) admits a closed-form solution. Both estimators can be combined by using LMSE-ICAMM 

to initialize the iterative computation of MAP-ICAMM .The new estimators are applied to the reconstruc- 

tion of missed channels in EEG multichannel analysis. The experiments demonstrate the superiority of 

the new estimators with respect to: Spherical Splines, Hermite, Partial Least Squares, Support Vector Re- 

gression, and Random Forest Regression. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Estimation is one of the fundamental problems in statistical 

signal processing [1] . It is an essential part of many fields like 

spectral analysis, coding, time series analysis, prediction, interpo- 

lation, smoothing. Moreover, it appears in many areas of appli- 

cation. In spite of the huge amount of previous work in statis- 

tical estimation methods, new developments are still possible if 

new statistical models appear, so that new maximum a posteriori 

(MAP) or least mean square error (LMSE) solutions can be found. 

In this paper we consider the Independent Component Analyz- 

ers Mixture Model (ICAMM) [2–4] of the multivariate probability 

density function (MPDF) of the observations. ICAMM is a versa- 

tile model which encompasses most of the usual MPDF models, 

including both non-Gaussian and Gaussian Mixture Models. This 

generality implies that optimal estimators assuming an underly- 

ing ICAMM can be very attractive options in a large variety of sce- 

narios. Therefore, we have derived the MAP and LMSE estimators 

of missing data, considering that the underlying MPDF is prop- 

erly captured by ICAMM. The MAP estimator will be obtained by 

and iterative algorithm, and will be called MAP-ICAMM. On the 

other hand, the LMSE estimator is the expected value of the miss- 

ing data conditioned to the available data, which we have calcu- 

lated assuming ICAMM; the corresponding estimator will be called 

LMSE-ICAMM. The new estimator has been assessed in the recon- 
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struction of missing data of electroencephalographic (EEG) signals 

measured on subjects while performing a memory and learning 

task. They have been compared with the method of splines [5] , a 

deterministic method which approximates complex function step- 

wise by local polynomials. In particular, we have considered the 

following state-of-the-art methods: Spherical Splines [ 6 ], which is 

the most commonly used method for interpolation in EEG process- 

ing in many EEG processing software, such as EEGLAB [7] ; Hermite 

interpolation [ 8 ], which is a benchmark smoothing and interpola- 

tion method; Partial Least Squares [ 9 ], a preferred tool for ill-posed 

linear estimation problems; Support Vector Regression [ 10 ], one of 

the most popular machine learning tools for regression; and Ran- 

dom Forest Regression [ 11 ], which is a recent multidimensional in- 

terpolation technique with good performance across different ap- 

plications (see [12] and the references within). 

In the next section we present the analytical derivation of the 

new proposed estimators (MAP-ICAMM and LMSE-ICAMM). Then 

Section 3 is devoted to the mentioned EEG data application. Con- 

clusion section ends the paper. 

2. Estimators based on ICAMM 

Let us consider an observation vector x of dimension ( M × 1). 

Without loss of generality, this vector can be defined as being com- 

posed by a vector of known components, y , and a vector of un- 

known components, z , in the form 

x = 

[
y 
z 

]
= P y y + P z z , (1) 
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where z is a vector of size ( M unk × 1) and therefore y is a vector 

of size (( M - M unk ) × 1). P y and P z are rectangular diagonal matri- 

ces respectively equal to the first M - M unk columns and the last 

M unk columns of the identity matrix of dimension ( M × M ), so that 

P y y = [ 
y 

0 M unk 

] and P z z = [ 
0 M−M unk 

z 
] , where 0 i is a zero vector of size 

( i × 1) . The goal is to estimate z from y . Let us assume that the 

MPDF p ( x ) is modeled with a K -class ICAMM. If x belongs to class 

C k k = 1 ...K, then 

x = A k s k + b k , (2) 

where s k is a vector of size ( M × 1) that contains statistically inde- 

pendent components (also known as “sources”); A k is the mixing 

matrix; and b k is a bias vector. Notice that A k is a square matrix 

that can be inverted to obtain W k = A k 
−1 , the de-mixing matrix of 

class k . Hence p ( x ) can be expressed as a mixture of K components 

respectively corresponding to the K classes. 

p ( x ) = p ( z , y ) = 

K ∑ 

k =1 

p ( z , y | C k ) P ( C k ) = 

K ∑ 

k =1 

| det W k | p ( s k ) P ( C k ) , 

(3) 

where P ( C k ) is the prior probability of class k . 

Given a training set of observation vectors x (n ) n = 1 , ..., N, we 

can estimate the model parameters W k , b k and P ( C k ), using one 

of the many existing methods (see [13] for a general procedure). 

1.1. MAP estimator (MAP-ICAMM) 

Let us consider the MAP estimator of z from y 

z MAP = max ︸︷︷︸ 
z 

log p ( z , y ) = max ︸︷︷︸ 
z 

L ( z , y ) . (4) 

This maximization requires the calculation of the derivative of 

L ( z, y ) with respect to z . By taking the log of (3) and considering 

that the components of s k are independent, we arrive to 

∂L ( z , y ) 

∂z 
= 

1 

p ( z , y ) 

K ∑ 

k =1 

| det W k | P ( C k ) 
M ∑ 

m =1 

∂ p ( s k ) 

∂ s km 

∂ s km 

∂z 

= 

K ∑ 

k =1 

p ( C k | z , y ) 
M ∑ 

m =1 

∂ log p ( s km 

) 

∂ s km 

∂ s km 

∂z 
, (5) 

where s km 

is the m -th source of class k . The value s km 

can be ob- 

tained as s km 

= w 

T 
km 

( x − b k ) , with w 

T 
km 

being the m -th row of W k . 

Thus, its derivative is equal to 

∂ s km 

∂z 
= 

(
w km 

T P z 

)T = P 

T 
z w km 

. (6) 

The derivative of log p ( s km 

), also known as the score function, 

can be calculated explicitly for many common probability density 

functions. This requires prior knowledge of the source PDF which 

could limit the applicability of the algorithm. To reach general ap- 

plicability, we will assume that the probability density of each 

source is to be estimated using a nonparametric kernel density es- 

timator with a Gaussian kernel. This requires labelling of the train- 

ing samples which can be made, once the model parameters have 

been estimated, by selecting the class k which maximizes the pos- 

terior probability P ( C k | x n ) = P ( x n | C k ) P ( C k ) / 
K ∑ 

k ′ =1 

P ( x n | C k ′ ) P ( C k ′ ) [3] . 

Let us call x (l) 
k 

l = 1 ... L k to the subset of the training samples 

assigned to class k , and s (l) 
k 

= W k ( x 
(l) 
k 

− b k ) , the corresponding 

source vectors. The non-parametric estimator of p ( s km 

) is given by 

p( s km 

) = 

1 

a 0 

L k ∑ 

l=1 

e 
− 1 

2 h 2 

(
s km −s (l) 

km 

)2 

, (7) 

where s (l) 
km 

is the m -th component of vector s (l) 
k 

, h is called the 

bandwidth of the nonparametric estimator, and a 0 is a scaling con- 

stant calculated so that 
∫ ∞ 

−∞ 

p( s km 

) d s km 

= 1 . For the Gaussian ker- 

nel of (7) , this scaling constant is a 0 = 

√ 

2 π h L k . The derivative of 

log p ( s km 

) is 

∂ log p( s km 

) 

∂ s km 

= 

L k ∑ 

l=1 

(
s km −s (l) 

km 

h 

)
e 

− 1 

2 h 2 

(
s km −s (l) 

km 

)2 

N T ∑ 

l=1 

e 
− 1 

2 h 2 

(
s km −s (l) 

km 

)2 
. (8) 

Hence, the derivative of L ( z, y ) can be calculated by replac- 

ing (6) and (8) into (5) . Then, maximization of L ( z, y ) could be 

achieved by using classical gradient algorithms, although Newton 

methods are preferable to get fast convergence. The problem of 

the Newton methods is that computation of the second deriva- 

tive is required. To overcome this inconvenience, a family of quasi- 

Newton methods have been proposed. In particular, the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm [14] is generally ac- 

cepted as the quasi-Newton method yielding the best compro- 

mise between fast convergence and computational payload, even 

for non-smooth optimization. That is the option that we have se- 

lected to obtain z MAP = max ︸︷︷︸ 
z 

L ( z , y ) . We have named this estima- 

tor as MAP-ICAMM. A pseudocode summary of the algorithm is in- 

cluded in the following: 

Algorithm 1. Computation of the MAP-ICAMM. 

Input : Training set of complete vectors x (n ) n = 1 ...N, vector of known 

components y , initial value for the unknown components z (0) 

Output : MAP prediction, z MAP 

1: Estimate ICAMM parameters b k W k P( C k ) , k = 1 ...K from the training set 

[13] 

2: Label training samples [3] and compute 

s (l) 
k 

= W k ( x 
(l) 
k 

− b k ) l = 1 ... L k k = 1 ...K

3: for i = 1…I 

4: Compute ∂L ( z ( i −1 ) , y ) 
∂z ( i −1 ) 

(5)–(8) 

5: end for 

6: z MAP = z (I) 

1.2. LMSE estimator (LMSE-ICAMM) 

The general solution to the LMSE criterion is the conditional ex- 

pectation of unknown data with respect to known data, that is, 

z LMSE = E [ z | y ] = 

∫ 
z p ( z | y ) dz . (9) 

Considering the mixture model in (3) and using the chain rule, 

z LMSE can be expressed as 

z LMSE = 

∫ 
z p ( z | y ) dz = 

K ∑ 

k =1 

∫ 
z p ( z | y , C k ) dz · P ( C k | y ) 

= 

K ∑ 

k =1 

E [ z | y , C k ] · P ( C k | y ) . (10) 

So we need to compute E [ z | y , C k ] and P ( C k | y ). Regarding E [ z | y , 

C k ], let us first compute the conditional expectation of the sources 

E [ s k | y , C k ]. Considering (1) and (2) we may write 

E [ s k | y , C k ] = E [ W k ( P y y + P z z − b k ) | y , C k ] 
= W k P y y + W k P z E [ z | y , C k ] − W k b k , (11) 

then we can solve for E [ z | y , C k ] by using the pseudoinverse 

( W k P z ) + 

E [ z | y , C k ] = ( W k P z ) 
+ · [ E [ s k | y , C k ] − W k P y y + W k b k ] . (12) 

Application of (12) to estimate E [ z|y , C k ] requires knowledge of 

E [ s k | y , C k ]. This later can be estimated using a variety of existing 
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