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A B S T R A C T

This study introduces a new version of a virtual tetrahedral gap element to connect partitioned structures which
are independently discretized with tetrahedral elements. Tetrahedral meshes are widely used for practical en-
gineering problems due to their simplicity. The proposed interface method employs the localized Lagrange
multiplier method. The virtual tetrahedral gap elements are placed between the frame-slave and frame-master
interfaces. The surface of the tetrahedral meshes is triangular; thus, a virtual tetrahedral gap element is devel-
oped. A distinct feature of the virtual tetrahedral gap element is that it has a zero-strain condition which provides
the exact interface reaction forces at the non-matched interface. The proposed tetrahedral gap element handles
three-dimensional interface problems more effectively than conventional segment-to-segment methods. It also
provides better accuracy. The validity and robustness of the proposed method are demonstrated by several nu-
merical examples.

1. Introduction

Interface schemes include domain decomposition, fluid-structure
interaction, and contact and crack analyses [1–4]. These analyses
generally use triangular elements in two-dimensional(2D) problems and
tetrahedral elements in three-dimensional(3D) problems because it is
easy to perform the analyses. The main purpose of the interface analysis
is to connect structures that contain different meshes at common
boundaries to ensure continuity in a consistent manner. This study con-
siders mesh-tying constraints for independent tetrahedral meshes of a
partitioned structure. An important step in the finite element method is
to create a discretization model. When performing a 3D engineering
analysis, the tetrahedral element is the preferred mesh to create a finite
element model from the computer aided design(CAD) model [13–15]. In
addition, tetrahedral meshes are more convenient than hexahedral
meshes. Based on these properties, tetrahedral elements are used for
various engineering interface problems, such as bulk-forming analysis
with large deformation. Moreover, remeshing is essential for large
deformation. Using the tetrahedron in the remeshing procedure makes
the mesh adaptation easier. In fluid-structure interface problems, tetra-
hedral elements provide a better shape representation of structures, such
as blades with complex shapes. In the field of biomechanics, virtual

surgery uses deformation and contact analysis of nonlinear materials
based on the finite element method. The expression of the exact shape of
the body part is essential for making accurate medical decisions. To this
end, tetrahedral elements are actively used, and the interface analysis for
tetrahedral elements is required. Substructures have different sizes of
meshes; hence, the interface nodes of each substructure do not match
along the shared boundaries. The mortar method, which imposes the
interface constraint in a weak sense, is first introduced for the domain
decomposition. The mortar method is more robust than the single pass
method; thus, it is widely used in interface methods.[20,30-35] Various
domain decomposition studies have been performed based on the mortar
method to connect the spatial grids. Contact constraints in the variational
equations can be applied in several ways. The method of Lagrange
multipliers is widely used in the mortar method [5,6,10–12,27,28]. The
Lagrangian multipliers act like contact forces between the substructures.
The Lagrangian multipliers are approximated by shape functions and
impose contact constraints on the corresponding interpolated displace-
ments to optimally satisfy contact constraints. In the work of Dohrmann
et al. [22,36], mesh tying problems were addressed for the 3D dissimilar
interface. However, a major concern of the interface method for 3D
surfaces is to accurately and efficiently integrate mortar constraints to
conserve momentum and energy [16–19].
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Song et al. [25,26] recently introduced the virtual gap element
approach based on the localized Lagrange multiplier for the 2D interface
problem and 3D interface problem with the brick element. The gap
element method provides better accuracy and efficiency for these cases.
From there, we have shown the possibility to extend the boundaries of
the research on the tetrahedral element, but there is no detail and cor-
responding analysis. This paper describes in detail the tetrahedral gap
elements that include the discrete frame construction method using
Delauney tessellation.

Brick elements provide better finite element analysis results than
tetrahedral elements. In addition, tetrahedral elements exhibit a
behavior that is too stiff as well as volumetric locking problems. Never-
theless, tetrahedral meshes are still preferred for complex engineering
problems. Numerous approaches have been proposed to overcome the
disadvantages of the analysis that employs tetrahedral elements [21–23].
Tetrahedral elements have recently been employed in the interface area,
and hexahedral elements are used in the interior of the structure to satisfy
both geometric representation and accurate numerical analysis. There-
fore, it is important to have a proper scheme to deal with tetrahedral
elements in the interface analysis.

The remainder of this paper is organized as follows: Section 2 briefly
reviews the variational formulation with interface constraints and the
mortar integration scheme. Section 3 describes the contact frame con-
struction with triangular meshes. The present method is based on the
localized Lagrange multiplier method; hence, it exploits frame structures
with triangular meshes. Section 4 introduces a virtual tetrahedral gap
element, which is a key element of the present work. Section 5 provides
numerical examples. Section 6 gives the concluding remarks.

2. Variational formulation with interface constraints

The mesh-tying problems of two elastic material bodies are consid-
ered throughout this paper. Two substructures are marked with super-
scripts 1 and 2 for the sake of illustration. Typically, 1 refers to the
master, and 2 is the slave.

2.1. Interface virtual work

Two divided bodies are designated as Ω1 and Ω2. The body surfaces
are represented as Γ1 and Γ2. The boundary covers all specific boundary
conditions, and does not overlap as follows:

Γa
u [ Γa

σ [ Γa
C ¼ 0 (1)

Γa
u \ Γa

σ ¼ Γa
C \ Γa

σ ¼ Γa
u \ Γa

C ¼ ϕ; a ¼ 1; 2

where Γu is the Dirichlet boundary with given displacements, and Γσ is
the Neumann boundary with prescribed tractions. ΓC is a common
interface. The subdomains must satisfy Eq. (1). In Fig. 1, the mesh-tying
constraint is represented as follows:

u1
�
x1
�� u2

�bx2� ¼ 0 on ΓC (2)

The above equation indicates that the relative displacement of the
substructures is zero. In other words, the divided bodies are joined
together. No distinction is found between the tangential and normal di-
rections of the displacement vector. The total potential energy consists of
the strain energy of the system, Πint , the potential energy of external
work, Πext , and the contact work with the Lagrange multiplier, ΠLM

C . For
elastic materials, these terms are expressed as:
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where e is the strain;D is the elastic material moduli; and λ represents the
Lagrange multiplier. In addition, b and t are the body force and surface
traction, respectively. The principle of the virtual work can be expressed
as:
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(4)

The mortar method based on the segment-to-segment approach is
implemented to the last term of the above equation, which is the virtual
contact work. Slave nodes are mapped to the master to integrate the
virtual contact work. The integration scheme for the interface constraint
will be described in the following section.

2.2. Mortar discretization

The displacements and Lagrange multipliers interpolation are given
as:

λ ¼
Xnλ
i¼1

ϕiλi; (5a)

ua ¼
Xn

i¼1

Na
i u

a
i ; a ¼ 1; 2: (5b)

The shape functionN is defined with respect to the finite element, and
three linear shape functions for the first-order tetrahedral element are

Fig. 1. Interface constraint.
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