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A B S T R A C T

A linear complete extended finite element method for arbitrary dynamic crack is presented. In this method,
strong and weak discontinuities are assigned to a set of non-nodal points on the interface, whereby the discon-
tinuous functions across the interface are reproduced by extended interpolation. The enrichments are described
to reproduce both the constants and linear functions on sides of the interface, which are critical for finite element
convergence. A key feature of this method is that the enrichment descriptions and the finite element mesh are
optimally uncoupled; the element nodes are not enriched facilitating the treatment of crack modeling in object-
oriented programs. The enrichment variables are physically-based quantities which lead to a strong imposition
of both the Dirichlet boundary conditions and the interface conditions. The convergence of the method is vali-
dated through static simulations from linear elastic fracture mechanics. The efficacy of the method for modeling
dynamic crack propagation is demonstrated through two benchmark problems.

1. Introduction

The extended finite element method (XFEM) [1,2] exploits a local
partition of unity [3] to enhance the approximation space by non-
polynomial bases. One advantage of the XFEM over the finite element
method (FEM) is that it can model the discontinuities in the solution to a
given PDE in a local domain without remeshing. However, in a standard
XFEM, finite element mesh is locally incorporated in the description of
enrichments, i.e., the finite element nodes which belong to mesh, but
not to the interface, are enriched to describe a discontinuity across an
interface. This will arise many difficulties in XFEM reproducing capa-
bilities, or even the programming implementation [4].

Some remedies have been provided in early XFEM studies to address
the difficulties arisen due to dependency between the mesh and the
enrichments. Examples include shifting the approximation to hold
the Kronecker-𝛿 property introduced by Belytschko et al. [5], treat-
ing blending elements to correct reproducing conditions addressed by
Chessa et al. [6] and Fries [7], and enriching a subset of element nodes
to satisfy C0-continuity conditions between the enriched element and
its contiguous elements discussed by Belytschko et al. [8] and Zi et al.
[9]. Moreover, Song et al. [10] introduced the phantom node method to
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model the discontinuities independently of the mesh. This approach was
further investigated for shell elements in Refs. [11,12]. As alternative
classes of methods, the cracking-particle method [13] and dual-horizon
peridynamics [14,15] in meshfree methods have been successfully used
in crack modeling. In these approaches, the crack is modeled by split-
ting particles on sides of the interface whereby the strong discontinuity
is captured independent of the mesh.

One of the main difficulties in enriching finite element nodes is the
imposition of Dirichlet boundary conditions. Since the interpretation of
enrichment variables is difficult, the non-smooth boundary constraints
[16] and interface constraints [17,18] are weakly enforced, i.e., they
are imposed in the weak form using Lagrange multiplier techniques.
Moreover, some treatments introduced for the XFEM cannot be applied
together. For instance, as lumped mass matrices are crucial for the effi-
ciency of the explicit time stepping, Menouillard et al. [19] introduced
a mass lumping strategy which is applicable to unshifted enrichment
functions. To circumvent such difficulties, it is desirable to have a tech-
nique that can describe discontinuities across the interfaces indepen-
dent of finite element mesh.

Another main difficulty in the standard XFEM is the programming
implementation. Since the finite element nodes in a local element are
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used to construct the enrichments, the element object and the enrich-
ment object in an object-oriented program (OOP) become dependent.
This feature clearly violates the OOP principle of abstraction as the dis-
continuities in a continuum are independent from the mesh. As a con-
sequence, several difficulties arise in both XFEM implementation and
post-processing steps [20,21].

To overcome these difficulties, a non-nodal enrichment technique
[22] was introduced to describe the discontinuities across an inter-
face with minimal incorporating of finite element mesh into enrichment
descriptions. In this approach, a partition of unity is not constructed, so
the element nodes are not enriched. Instead, discontinuities are defined
for a set of non-nodal points on the interface to reproduce discontinu-
ous fields across the interface. The enrichments in Ref. [22] reproduce
strong discontinuities in displacement fields, which can well reflect the
nature of a crack. Furthermore, since the enrichment parameters were
selected to be the displacement jumps which are, in fact, physically-
based variables related to the crack, the interface boundary conditions
can be easily treated in the strong form as Dirichlet boundary condi-
tions.

The main objective of this study is to enhance the interpolation in
Ref. [22] to reproduce not only the strong discontinuities in displace-
ment fields but also the discontinuities in their first derivatives. To this
end, a new set of enrichment bases is introduced to non-nodal points
on the interface to reproduce the jumps in the first derivatives. This
leads to a completely local enrichment without shifting techniques and
a linear complete approximation, i.e., the interpolation can reproduce
both rigid body motion and constant strain state on both sides of the
interface.

The remainder of the paper is as follows. In section 2, we provide
the non-nodal enrichment displacement for a linear complete approxi-
mation in one- and two-dimensional problems. Section 3 presents the
strong form, the weak form and the discretizations for dynamic analysis.
It also introduce a quadrature rule developed for non-nodal enrichment
methods. Finally, section 4 provides several numerical studies analyzed
by the method for static and dynamic simulations.

2. Enriched displacement fields for discontinuity

We consider a two-dimensional body Ω with its boundary Γ in the
initial configuration, as shown in Fig. 1. The body includes a crack with
a surface discontinuity denoted by Γc. Two sides of this discontinuity
are signed by a continuous level set function f(X) so that f(X) =0 gives
the discontinuity surface. The level set function f can be described by
the signed distance function as

f (X) = min
X∈Γc

‖X − X‖ sign(n+ · (X − X)) (1)

where X is the closest point on the interface to X and ∥ · ∥ denotes
the Euclidean norm. The unit normal vector n+ is perpendicular to the
discontinuity surface where the level set is positive, i.e., f>0.

We extend the interpolation so that it can capture two discontinu-
ities: a strong discontinuity across the crack surface which can be rep-
resented with a jump in displacements and a weak discontinuity which
can be considered as a jump in strains. It can be shown that when
the interpolation reproduces independent linear functions on sides of
the interface, then such discontinuities can be captured. Therefore, the
interpolation is enriched to reproduce two discontinuous displacement
fields: a displacement field with a strong discontinuity denoted by Φu

which is defined using the Heaviside function, i.e.,

Φu = H(f (X)) =
{

0 if f < 0,
1 if f > 0,

(2)

and another displacement field with a weak discontinuity, i.e., a dis-
continuity in its first derivative denoted by Φ∇u which is defined as

Fig. 1. A two-dimensional body with a crack in material coordinates.

Φ∇u = H(f (X)) × f (X) =
{

0 if f < 0,
f (X) if f > 0.

(3)

For each discontinuity, a physically−based variable which can best
reflect the nature of the discontinuity is defined as an enrichment
parameter and assigned to non-nodal points on the surface of disconti-
nuity. In the following, we first construct the enrichments for a linear
element in one dimension and then for a linear triangular element in
two dimensions.

2.1. Representation of a crack with non-nodal enrichment parameters for
2-node linear elements

We consider a one-dimensional bar with a discontinuity, i.e., a crack
at X=Xc as shown in Fig. 2. The level set function f is considered neg-
ative and positive on the left and right sides of the crack, respectively.
Fig. 2(a) illustrates an arbitrary displacement field consisting of two
independent linear fields on each side of the crack. Such displacements
can be reproduced by superimposing three independent parts: (i) a con-
tinuous displacement represented by the finite element interpolation
shown in Fig. 2(b); (ii) a strong discontinuity represented by a jump
in the displacement ⟦u⟧ at the non-nodal point at Xc as illustrated in
Fig. 2(c); and (iii) a weak discontinuity represented by a jump in the
strain ⟦Le∇u⟧ at Xc as described in Fig. 2(d). Here, the element length
Le is consciously multiplied to make the units of nodal values consistent
with other terms in (4). This results in significant reduction of the condi-
tion number of the stiffness matrix. Notice that four unknown variables
are employed to approximate a displacement field in this bar, i.e., {u1,

u2, ⟦u⟧, ⟦Le∇u⟧}.
Using these variables, the approximation of the displacement field

in a one-dimensional bar can be defined by

u (X, t) = ucont (X, t) + udisc (X, t)

=
2∑

I=1
NI (X) uI (t) + Ψu (X) ⟦u (t)⟧ +Ψ∇u (X) ⟦Le∇u (t)⟧. (4)

The non-nodal enrichment functions Ψu and Ψ∇u are constructed so
that (4) can reproduce the discontinuous displacement fields Φu and
Φ∇u given in (2) and (3), respectively. These discontinuous fields are
illustrated in Fig. 3.

Let us first consider the displacement field with a strong disconti-
nuity, i.e., u=Φu. Then, the nodal values consisting of the regular and
enriched degrees of freedom (DOFs) can be calculated as

Regular DOFs ∶
{

u1 = 0
u2 = 1

, Enriched DOFs ∶
{⟦u⟧ = 1⟦Le∇u⟧ = 0.
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