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A B S T R A C T

Natural phenomena evolve in space and time are often highly dynamic. Numerical simulations and earth ob-
servations have provided the capability to capture and study the complex evolvement of natural phenomena in a
discrete fashion. It is demanding but challenging to extract events from these datasets automatically. Based on
the previous research on feature identification, this research presents a movement tracking framework to analyze
evolvements and dynamic movements of detected events. The framework consists of three components: feature
identification, movement tracking, and track simplification. Based on the proposed framework, dust storm
events are systematically detected and analyzed concerning their dynamic movements from a 4D (x, y, z, and t)
simulation dataset over North Africa, the Mediterranean, and the Middle East from December 2013 to November
2014. The systematic research includes single event, multi-event, and seasonal analyses. Evaluation of the de-
tected dust events shows that the tracked dust events align well with observations, with ∼80% identification
accuracy and consistency in the movement pattern. To briefly demonstrate its capability, we adopted the pro-
posed framework to detect precipitation events from 3D (x, y, and t) precipitation observation data.

1. Introduction

Natural phenomena evolve in space and time and can be highly
dynamic (Yang et al., 2011). With the improvement of numerical si-
mulations and earth observations in spatiotemporal resolution and
coverage, scientists and researchers can capture and study complex
physical processes and evolution patterns in a discrete fashion. These
simulations and observations can be three-dimensional (3D: x, y, and t)
or four-dimensional (4D: x, y, z, and t), allowing the investigation of the
movement patterns of natural phenomena in the temporal and vertical
dimensions. The obtained knowledge or insights may include “where
and when natural phenomena happen,” “how long a natural phenom-
enon lasts,” or “what the common transport pathway is for a natural
phenomenon.”

GIScience methodologies and techniques assist the understanding of
dynamic geographic changes over space and time, but challenges re-
main in handling complex natural phenomena, especially for data with
higher dimensions (Yuan, 2001; Worboys, 2005; Pultar et al., 2010).
The increasing spatiotemporal resolution of simulations and earth ob-
servations has become more complicated for scientists to examine

manually. Although numerical simulations and earth observations
provide the spatiotemporal data source, researchers and scientists still
need to develop algorithms to identify and track the movement of
features (e.g., thunderstorm, hurricane, ocean eddy). Automatically
identifying and tracking features are challenging; because features are
moving with changing boundaries and capable of splitting and merging,
and these movement patterns distribute over space and time. Therefore,
providing an efficient way to detect these movement patterns is es-
sential to the natural phenomena analysis. Besides, tracking features at
different thresholds convey different information about the phe-
nomena. It is essential to be able to track the movement of events at
various thresholds efficiently.

The objectives of our research are threefold: 1) identify features
based on out previous work (Yu and Yang, 2017) and introduce the
tracking framework to connect the identified features in consecutive
time steps; 2) apply the framework to a 4D simulation dataset; and 3)
analyze the evolvements and dynamic movements of the events. Dust
events are chosen as case studies to illustrate how this tracking ap-
proach can be used to represent and analyze the dynamic movements of
natural phenomena. For an individual dust event, it is essential to
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understand the physical process of dust up-lift from arid and semi-arid
regions, transport in the air, and deposition back to the ground. Besides,
one of the major topics towards mineral dust is the spatiotemporal
patterns of dust transport from desert source regions (Israelevich et al.,
2003; Prospero and Lamb, 2003; Borbély-Kiss et al., 2004). Dust events
that originate from a specific source show region-specific patterns of
transport pathways (Israelevich et al., 2003; Moulin et al., 1998).
Natural phenomena tend to interact with each other during transport in
the atmosphere, such as split and merge (El-Askary et al., 2002; Ammar
et al., 2014; Stein et al., 2015). These complex physical processes can
only be adequately addressed in a 3D or 4D environment.

Related research of 3D feature tracking is reviewed in Section 2.
Section 3 introduces the movement tracking approach. Section 4 ana-
lyzes dust storm events, their dynamic changes, and transport path-
ways, and Section 5 evaluates the resulting dust events with visibility
observations, and archived dust events in NASA Earth Observatory.
Finally, Section 6 offers conclusion from this research followed by po-
tential future work.

2. Related works

Tracking natural phenomena includes two categories of methods:
centroid- and overlapping-based. Centroid-based tracking methods
normally treat the features in consecutive time steps whose centroids
are within a certain radius in the same track. Johnson et al. (1998)
made a guess on the cell centroid locations at tn-1 to where they would
be at tn based on its positions at several previous times, and assigned
each cell at tn to the closest unassigned centroid within a certain search
radius. Lakshmanan et al. (2009) tied projected cells within a size-based
radius (given by (A/π), where A is the area of the storm, when dealing
with 2D) across different time steps.

Tracking methods using overlapping mechanism require that spatial
and temporal frequencies be high enough regarding the expected size
and speed of the features to track (Samtaney et al., 1994). Otherwise,
unlinked features need to be associated using additional information in
a second iteration of tracking. Choi et al. (2009) calculated the degree
of association between overlapping storm features using an inverse cost
function. The degree of association reflects the size similarity and
moving speed of two associated features. Han et al. (2009) treated cells
at tn that have 50% or more significant overlap with cells from tn-1 as
first matched, while unmatched cells are associated using a global cost
function or assigned a new ID. A better approach is that of Dixon and
Wiener (1993), where it utilized a combined approach of areal over-
lapping and centroid matching. First, storms that overlap significantly
at two successive times are likely to be from the same storm. Then, an
optimization scheme determines the most likely match between storms
identified at successive scans. The optimization selects the track paths
with shorter lengths, connects storms with similar characteristics (such
as size and shape), and eliminates those tracks that exceed the max-
imum expected speed of storm movement.

Choosing the right approach is closely related to the spatiotemporal
scales of datasets. Overlap-based methods are more suitable for tracking
more substantial features with higher temporal resolution, and cen-
troid-based methods may not be suitable for features with variable sizes
(Lakshmanan et al., 2009). Therefore, a tracking approach needs to be
designed and developed specifically for the natural phenomenon.

3. Feature identification and tracking methodology

The procedure of constructing the four entities of the framework
includes the following: 1) identification of static dust storm features; 2)
track features over consecutive time steps; and 3) composition of the
event through tracking results (Fig. 1a).

3.1. Data and implementation

Dust simulation outputs were obtained from BSC-DREAM8bv2.0
(Pérez et al. 2006a, 2006b; Basart et al., 2012), a dust forecast opera-
tional system with the updated version of the former Dust Regional
Atmospheric Model (DREAM; Nickovic et al., 2001) maintained by the
Barcelona Supercomputing Center. The simulated dust concentration
data include 12 months from December 2013 to November 2014 and
cover a standard latitude/longitude grid of approximately 0.3°× 0.3°
resolution for the broad north African and European domain
(25.7W–59.3E, 0.76S–64.3N). The temporal resolution is hourly, and
each time step contains voxel number of 256× 196×24 (latitude,
longitude, pressure level) (Fig. 1b).

The implementation was conducted in Python (Van Rossum and
Drake, 1995) as a prototype, including the feature identification (Sec-
tion 3.2) and tracking algorithms (Section 3.3). Visualization was im-
plemented with the assistance of third-party libraries, including Numpy
(Van Der Walt et al., 2011) and Scikit-learn (Pedregosa et al., 2011).

3.2. Identifying static meteorological features

The identification of meteorological features at each time step is
conducted using a region-grow based algorithm that integrates the idea
of the region-grow algorithm (Zucker, 1976) into 3D context; the sim-
plified pseudo-code version of the algorithm is illustrated in Fig. 2. The
computational complexity of this algorithm is quadratic concerning the
number of voxels at two consecutive time steps. This algorithm is based
on Yu and Yang (2017). The original algorithm has a multi-thresholding
approach, which facilitates the identification of multiple high-con-
centration substorms within a larger low-concentration system. In this
research, it is simplified to a single-thresholding approach, so that the
tracked dust event is of the same level of concentration. A meteor-
ological feature is specified as a contiguous volume with a concentra-
tion/intensity value greater than a threshold (Dth), while its volume is
greater than a threshold (Vth). For each identified meteorological fea-
ture, the geometry is calculated using the boundary extraction method -
Marching Cubes (Lorensen and Cline, 1987). Besides, associated attri-
butes are calculated (e.g., concentration-weighted centroid in degree,
speed in degree/hour, number and position of pixels in the dust storm
object, area in degree*degree, maximum and average concentration or
intensity). For the 4D dust simulation data, a dust concentration
threshold of 360 μg/m3 and a volume threshold of 10 voxels were used.

3.3. Tracking the linkages of features over consecutive time steps

After the feature identification strategy (Section 3.2) is applied to
the meteorological data, a list of feature objects exists for each time
step. The tracking algorithm associates these objects across time to
track the progress of the features as they form, move, and dissipate.

3.3.1. Overlapping strategy
Since the volumetric size of dust feature varies from 10 to 500

voxels, an overlap-based method was developed with an additional
check, detailed in the pseudo-code (Fig. 3). In the first overlap check,
the dust features over consecutive time steps are checked to track the
potential linkages, based on the assumption that meteorological fea-
tures from a later time step have partial overlap with those from an
earlier time step. This overlap approach performs a matching test on
features extracted from one timestep with all of the features extracted
from the subsequent time step, and all combinations of features from
dataset ti+1 (for amalgamation/bifurcation). The best match is selected
by minimizing the cost function defined as follows: β=100−O(Ct,
Ot−1), where O is a function measuring the percentage of overlap be-
tween the candidate object Ct and the object Ot−1.

The second check considers the rare cases when a feature is small in
size and moving fast compared to the spatial and temporal resolution of
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