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A B S T R A C T

Existing parameterization of origami structures is based on angles, which is an inconvenience for the fabrication
and calculation of the geometrical properties of an origami-engineering project. In this paper, a unified para-
meterization based on the dimensional parameters, including the length and height instead of the angles, is
proposed. Various origami-based tubes reconstructed through the proposed parameterization process and
compiled into a program are then described. Three types of tubes including non-flat foldable, locally flat-fold-
able, and entirely flat-foldable are systematically divided when forming a closed-loop tube, and a criterion is
proposed for estimating the flat foldability of the tube. Finally, the proposed theory is validated based on
physical prototypes folded using paperboard and fabricated using polymer through a blow molding process. The
constructed origami-based tubes provide extensive guidance for the design of energy absorbing structures.

1. Introduction

The crashworthiness of a device is of considerable importance to
ensure the safety of passengers for a transport vehicle design [1–3]. A
tube with presupposed corrugations on its surface is used as an energy
absorbing device [4,5]. When compressed or impacted, a tube is able to
deform along the corrugations, thereby reducing the peak load and
expending more energy by enlarging the mean load [4,6]. A tube can be
used for various applications, such as a crash box [7] or vehicle bumper
[8], as well as in the landing gear of a helicopter [9].

Origami is a topic of active research in the scientific community,
and is used to create various folded devices. Origami-based tubes have a
unique characteristic in terms of the crease arrangement, leading to a
foldable deformation during compression [10–12]. On the one hand,
they can be used as a nearly kinematic mechanism, focusing on the
kinematic analysis of the mechanism applied [12,13]. On the other
hand, they can be used as a mechanical structure, focusing on the
collapse behavior of the energy absorption [7,14].

The geometric modeling approaches used in these studies vary
widely because the particular geometric parameters are typically only
derived as needed [15]. Most studies on origami-based tubes have been
parameterized in term of their angles, for example, an edge angle [13]
and a folding angle [12,16]. When identifying and exploring their
geometrical properties, a complex conversion of the angles into the
dimensions is required, for example, the length [10,17], volume [18],

and density [19]. However, in engineering studies and actual fabrica-
tion, patterns have often been denoted in terms of their dimensions,
which allow a straightforward calculation of the geometrical properties,
for example, the height [14,20,21], and are directly available for fab-
rication without the above conversion, for example, the total length
[22,23] and height [7,24]. Consequently, when exploring patterns for
the engineering and fabrication of an origami structure, existing para-
meterizations in terms of the angles appear to be inconvenient and
incomplete. It is important to highlight that a study concerning the
parameterization in terms of dimensions can be applied to identify the
mechanical properties of an origami structure.

This paper focuses on unified parameterized modeling depending on
the dimensional parameters, including the length and height instead of
the angles. First, a general crease pattern consisting of various isosceles
trapezoids as the basic geometrical units is proposed. Next, a transfor-
mation from a crease pattern to its corresponding origami-based tube is
parameterized. Various types of tubes compiled through a systematic
analysis of their length and height are then described. In addition, a
classification of the tubes is presented in terms of their flat foldable
feature, and a criterion is discovered to estimate their flat foldability.
Finally, physical tubes folded from paperboard and fabricated using
polymeric blowing form are utilized to verify the models established
through the proposed parameterization. The constructed tubes provide
extensive guidance for the design of energy absorbing structures.
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2. Modeling of origami-based tube

It is well known that Miura and Yoshimura patterns are composed of
identical parallelograms and triangles as the basic geometric units, re-
spectively. Herein, a general origami crease pattern is proposed, as
shown in Fig. 1, in which the creases consist of edges of isosceles tra-
pezoids as the basic geometrical units. Many layers are contained in the
crease pattern, and each trapezoid is connected with its adjacent tra-
pezoid through shared edges. Various shapes of the trapezoids can be
exhibited through an adjustment of the deployed heights, as well as the
upper and lower bases. According to the definition of rigid foldable
origami, the facets applied in this study are flat and cannot be stretched
or ripped during folding, in which fold bends should be conducted
along the creases [25]. In addition, we focus on the parameterized
transformation, from the initial crease pattern to its corresponding or-
igami-based tube, instead of a kinematic analysis of the foldability and
energy absorbing capability of the structures.

2.1. Definition of crease pattern

As shown in Fig. 1, the total length and width of one crease pattern
are usually given, and are denoted as s and w, respectively. The crease
pattern starts from the midpoint of the base of one trapezoid, and has n2
creases and m layers along the −N and −M directions, respectively.
Herein, vertexes are numbered as … …i n1, 2, , , , 2 ≥n( 2) along the −N
direction, and layers are numbered as … …j m1, 2, , , , ≥m( 2) along the

−M direction. The vertex Vi j, thus represents the ith point in the jth layer
= =i n j m( 1, 2...2 , 1, 2... ). The jth layer consists of an alternating as-

signment of n edges of aj, and n edges of bj, without a loss of generality.
Two bases of the isosceles trapezoid can be denoted, utilizing the edge
lengths of +aj 1 and aj, or +bj 1 and bj. Furthermore, the edge lengths aj
are independent in different layers = …j m( 1 ). The deployed heights of
trapezoids in the crease pattern, denoted as +hj

j 1 = … −j m( 1, 2 1), are
equivalent in the same layer, and are independent between different
layers. Inner angles of trapezoids are denoted as +φj

j 1

= … −j m( 1, 2 1), which are assumed to fall within the range of ( )0, π
2 .

The inner angle related to the shapes of the trapezoid is not exactly
preserved. As a result, the total length s( ), total width w( ), and inner
angle +φ( )j

j 1 in a crease pattern can be expressed as follows:
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where l indicates the length of one periodic segment of the total length.

2.2. Verification of coplanarity

During folding, the two-dimensional (2D) crease pattern is trans-
formed into a three-dimensional (3D) configuration. Each vertex Vi j, is
surrounded by four trapezoids in the crease pattern and has singly
folding track. Herein, four adjacent vertexes ( −Vi j2, , −Vi j1, , Vi j, , and +Vi j1, )
and their corresponding trapezoids are selected to analyze their folding
locations without of a loss of generality, as shown in Fig. 2a. At an
arbitrary folding state, eight dihedral angles between plane

− + + −V V V Vi j i j i j i j1, 1 , 1 , 1, and plane − −V V Vi j i j i j2, 1, , , between plane
− + + −V V V Vi j i j i j i j1, 1 , 1 , 1, and plane − +V V Vi j i j i j1, , 1, , between plane
− − − −V V V Vi j i j i j i j1, 1 , 1 , 1, and plane − +V V Vi j i j i j1, , 1, , between plane + +V V Vi j i j i j, 1 , 1,

and plane − +V V Vi j i j i j1, , 1, , between plane − + + −V V V Vi j i j i j i j1, 1 , 1 , 1, and plane
− − − −V V V Vi j i j i j i j1, , , 1 1, 1, between plane − − − −V V V Vi j i j i j i j1, , , 1 1, 1 and plane

− +V V Vi j i j i j, 1 , 1, , between plane + +V V Vi j i j i j, 1 , 1, and plane + −V V Vi j i j i j1, , , 1, and
between plane + +V V Vi j i j i j, 1 , 1, and plane − + + −V V V Vi j i j i j i j1, 1 , 1 , 1, , are denoted
as −λi j1,

1 , λi j,
1 , λi j,

2 , λi j,
6 , δi j,

1 , δi j,
2 , δi j,

3 , and δi j,
4 , respectively. The former four

dihedral angles are assumed to fall within the range of [0, ]π
2 . The last

four angles are assumed to fall within the range of π[0, ]. Two edge
angles ∠ − −V V Vi j i j i j2, 1, , and are denoted as −εi j1,

1 and εi j,
1 , respectively,

which are assumed to fall within the range of π[0, ]. After one unit
sphere around vertexVi j, is used to cut four trapezoids around the vertex
Vi j, in Fig. 2a, two spherical triangles make up of four sectors of single-
vertex which is cut from the trapezoids, as shown in Fig. 2b. The angles
and edges of the spherical triangles can be marked. Applying the sine
and cosine laws of spherical triangles, three relationships can be es-
tablished between dihedral and edge angles as follows (see the Ap-
pendix A for details):

Fig. 1. Crease pattern at the deployed state and parametric definition. Mountain and valley fold lines in the crease pattern are represented using heavy solid and
dashed lines, respectively.
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