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A B S T R A C T

An innovative procedure is introduced for the analysis of arbitrarily shaped thin plates with various boundary
conditions and under generic transverse loading conditions. Framed into Line Element-less Method, a truly
meshfree method, this novel approach yields the solution in terms of the deflection function in a straightforward
manner, without resorting to any discretization, neither in the domain nor on the boundary. Specifically, ex-
pressing the deflection function through a series expansion in terms of harmonic polynomials, it is shown that
the proposed method requires only the evaluation of line integrals along the boundary parametric equation.
Further, minimization of appropriately introduced novel functionals directly leads to simple systems of linear
algebraic equations for the unknown expansion coefficients. Notably, the proposed procedure yields exact so-
lutions, when available, for different plate geometries. Additionally, several numerical applications are pre-
sented to show the reliability and simplicity of the approach, and comparisons with pertinent Finite Element
method data demonstrate the efficiency and accuracy of the proposed procedure.

1. Introduction

Many structural problems in engineering mechanics are governed
by partial differential equations (PDEs) whose exact solutions is known
for few restricted cases of practical interest. In this regard, the eva-
luation of the structural response of plates under generic loading con-
ditions, commonly described via a biharmonic PDE in Kirchoff's theory,
is a well-established problem in applied mechanics due to the constant
use of these structural elements in most engineering fields.

Clearly, since exact plate solutions are available only for certain
shapes, boundary and loading conditions [1], several numerical pro-
cedures have been proposed and their development still attracts the
attentions of many researchers in the field [2–4]. In this context, the
Finite Element Method (FEM) [5] and Boundary Element Method
(BEM) [6] unquestionably represent the most commonly employed and
powerful numerical techniques for general structural analysis.

As well-known the use of mesh, be it in the domain or in the
boundary, is a common characteristic of these traditional approaches.
Specifically, while conventional FEM approach basically requires a
discretization over the entire domain through finite elements mesh, in
the BEM an integral equation is obtained and a boundary mesh is re-
quired to numerically approximate the boundary integrals involved. It

is worth underscoring that, in this latter approach the governing dif-
ferential equation is satisfied exactly inside the domain and high ac-
curacy is generally achieved with a relatively small number of
boundary elements. Notably, the extensive research efforts devoted in
the last few decades to the development of these approaches have al-
lowed to circumvent most numerical problems associated to the domain
or boundary discretization, thus making FEM and BEM the dominant
approaches for most problems in computational mechanics.

Nevertheless, the possibility of obtaining numerical solutions for
PDEs without resorting to any discretization, that is the so-called
meshless approach, has rather recently gained the attention of scientists
and engineers working in this field. As defined in [7] a meshless
method, also referred to as meshfree method, is a method used to es-
tablish system equations for the whole problem domain without the use
of a predefined mesh for the domain discretization. This approach has,
therefore, become an alternative to classical FEM and BEM due to some
beneficial features such as its flexibility, wide applicability and the
possibility of avoiding problems related to meshing and remeshing in
the domain or boundary [7,8].

In this regard, framed in the meshless approach, different proce-
dures have been proposed to solve a variety of engineering problems
[9], such as the element free Galerkin Method [10,11], Petrov–Galerkin
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approach [12], h-p clouds method [13], and the reproducing kernel
element method [14] among the others. Further, specifically referring
to the plate analysis, the works in [15–22] and references therein can be
mentioned. Finally, note that other classes of methods, which are in-
herently meshless, exist for the plate bending problem, including the
Trefftz method [23], the pb-2 Rayleigh-Ritz method [24,25], and the
Galerkin method [26].

Additionally, a novel truly meshless procedure, namely the Line
Element-less Method (LEM), has been introduced for the analysis of De
Saint Venant pure torsion and flexure-torsion problem for both iso-
tropic and orthotropic material [27–31]. Notably, this method does not
require any discretization neither in the domain nor on the boundary,
and all the involved integrals are simple line integrals. Further, based
on the analogy between plates bending under edge moments and beams
in torsion [32–34], recently the aforementioned LEM has been em-
ployed for the bending problem of simply supported plates subject to
uniformly distributed edge moments [35].

In this context, aim of this paper is to extend the LEM for the ana-
lysis of arbitrarily shaped plates, without any holes, assuming various
boundary conditions (BCs) and subject to transverse loads. Specifically,
the original biharmonic PDE, which rules the plate deflection, is de-
composed in two Poisson's equations, whose solution is expressed as the
superposition of pertinent particular solution and harmonic poly-
nomials with unknown expansion coefficients. These coefficients are
then determined satisfying the prescribed BCs on the contour.

Note that, in the proposed procedure the BCs are satisfied in a least
square sense on the plate contour, and only line integrals along the
boundary parametric equation are required, leading to systems of linear
algebraic equations for the unknown expansion coefficients.

Remarkably, as it will be shown in the following, this procedure
yields exact closed-form solutions when available, for different plates
geometries, while in the other cases approximate accurate analytical
solutions are achieved generally employing few terms in the series
expansion. This may be clearly considered an attractive feature of the
proposed method, especially with respect to other meshfree procedure
which are inherently exclusively numerical in nature.

Interestingly, unlike the Trefftz method [23], where the BCs are
enforced in a number of boundary points to determine pertinent ex-
pansion coefficients, or classical meshfree approaches, where several
nodes are generally considered in the domain, this proposed procedure
is entirely element-free. Further, with respect to the classical Rayleigh-
Ritz approach [24,25] more general plate shapes and BCs can be han-
dled, and cumbersome integration over domains are not involved.
These aspects may clearly represent an advantage of the proposed
procedure.

Several numerical applications will be shown, demonstrating the
elegance and simplicity of the proposed procedure, and corresponding
data vis-à-vis classical FEM results will be reported, assessing the ac-
curacy and reliability of the procedure.

2. Problem definition

Consider a homogeneous isotropic thin plate, of arbitrary shape
with contour and domain , uniform thickness h and modulus of
elasticity E, generally referred to as Kirchhoff plate (see Fig. 1). The
governing differential equation in terms of transverse deflection w x y( , )
is the well-known biharmonic Eqs. [1,36]
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where q x y( , ) is the transverse distributed load, =D Eh /12(1 )3 2 is
the flexural rigidity of the plate and is the Poisson ratio.

The bending moments M x y( , )x and M x y( , )y , and the twisting mo-
ment M x y( , )xy are given as
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while the shearing forces V x y( , )x and V x y( , )y are given by

= +V x y D
x

w
x

w
y

( , )x
2

2

2

2 (3.a)

= +V x y D
y

w
x

w
y

( , )y
2

2

2

2 (3.b)

Further, introducing the so-called moment sum M x y( , ) as
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Eq. (1) can be recast into two equivalent Poisson's equations as [37]
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2 is the well-known Laplace operator.

Thus, the solution of the plate problem Eq. (1) reduces to the in-
tegration of the two Eqs. (5 a, b) in succession, which is sometimes
preferred depending upon the method of solution employed.

As far as the boundary conditions (BCs) are concerned, denote as n
and t the outward unit normal and tangent vector at a point A of a
generic curvilinear edge of the contour , and let be the angle be-
tween the normal n and the x axis (see Fig. 1). Thus, for the most
common cases, the boundary conditions for the curvilinear edge can be
specified as [38–40]

i. Simply-supported edge

=w x y( , ) 0 (6.a)

=M x y( , ) 0n (6.b)

where M x y( , )n denotes the normal bending moment applied at the
edge, and is given as

= + +M x y n M n M n n M( , ) 2n x x y y x y xy
2 2 (7)

where nx and ny are the components of the unitary vector n along
the x and y axes, respectively.

Fig. 1. Plate with arbitrary shape.
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