FISEVIER

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles

Yuan Jiang^{a,*}, Eric Liese^{a,*}, Stephen E. Zitney^{a,b}, Debangsu Bhattacharyya^b

- ^a National Energy Technology Laboratory, 3610 Collins Ferry Rd, Morgantown, WV 26507, USA
- ^b Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA

HIGHLIGHTS

- Design and dynamic models are developed for PCHEs in sCO2 Brayton cycles.
- Models are validated with the laboratory operating data.
- Design guidance is provided for a 10 MWe pilot-scale sCO2 Brayton cycle.
- · Key design and dynamic measures of three types of exchangers are compared.

ARTICLE INFO

Keywords: sCO₂ Brayton cycle Printed circuit heat exchanger Optimal design Dynamic modeling Aspen custom modeler

ABSTRACT

Due to the unique geometries and hydraulics of printed circuit heat exchangers and rapidly changing properties of supercritical carbon dioxide, the effective design and rating of printed circuit heat exchangers is an essential requirement for their use in supercritical carbon dioxide power cycles. In this study, one-dimensional design and dynamic models have been developed in Aspen Custom Modeler for printed circuit heat exchangers utilized in printed circuit heat exchangers Brayton power cycles. The design model is used to determine the optimal geometry parameters by minimizing the metal mass. The dynamic model is used to predict transient behavior and can be easily implemented into system-level models developed in Aspen Plus Dynamics for cycle performance evaluations. In these models, the heat transfer coefficient and friction factor are calculated using data reported by Heatric, a prominent printed circuit heat exchanger manufacturer. Both models are validated by comparing with the data from a small-scale exchanger used in the 100 kWe facility operated by the Naval Nuclear Laboratory, and then applied to design and simulate low- and high-temperature recuperators for a 10 MWe supercritical carbon dioxide indirect recompression closed Brayton cycle, which is of interest to the U.S. Department of Energy. The designs and dynamic responses of the printed circuit heat exchangers are compared with conventional shell-and-tube exchangers and microtube shell-and-tube exchangers for the same applications. The simulation results indicate that the proposed printed circuit heat exchangers have fast dynamic responses due to their small metal masses and high heat transfer coefficients compared with the conventional shell-andtube exchangers. Even though the metal masses of the designed PCHEs are slightly higher than those of the microtube shell-and-tube exchangers, the printed circuit heat exchangers are still promising candidates for heat recuperation because of their mature manufacturing procedures and abundant laboratory and industrial operating experience.

1. Introduction

Supercritical carbon dioxide (sCO_2) is a promising alternative working fluid for power generation, because of its potential high efficiency and power density [1,2], especially when operating at high temperatures [1,3]. Ahn et al. reviewed several configurations of sCO_2 power cycles proposed in the open literature [1]. Among those

configurations, the indirect sCO_2 recompression closed Brayton cycle (RCBC) is gaining recent interest [4], and the development of a 10 MWe sCO_2 RCBC pilot plant is the focus of a Department of Energy project awarded under its Supercritical Transformational Electric Power (STEP) program [4,5]. Different from typical steam-based Rankine power cycles, the entire sCO_2 Brayton cycle is usually operated above the critical point of CO_2 . Also the sCO_2 cycle pressure ratio is much smaller than

E-mail addresses: yujiang@mix.wvu.edu (Y. Jiang), Eric.Liese@netl.doe.gov (E. Liese).

^{*} Corresponding authors.

Y. Jiang et al. Applied Energy 231 (2018) 1019–1032

Nomen	clature	L_x	width of PCHE core in m
		L_y	hight of PCHE core in m
Abbreviations		L_z	length of PCHE core in m
		$M_{\!H\!X}$	total metal mass of the recuperator in kg (1
1D	one-dimensional		tonne = 1000 kg)
3D	three-dimensional	N_c	number of channels per plate
ACM	aspen custom modeler	N_{cp}	number of channels in cold plates
BFD	backward finite difference	N_{hp}	number of channels in hot plates
CFD	computational fluid dynamics	N_p	number of plates
FFD	forward finite difference	*	Nusselt number
Н	high-angle channel (40°)	P	pressure in bar
HTR	high temperature recuperator	ΔP_{max}	Maximum allowable pressure drop in bar
IST	integrated system test	Pr	Prandtl number
L	low-angle channel (30°)	Q	heat duty in MW
MSTE	microtube shell-and-tube exchangers	R_p	ratio between the number of hot and cold plates
NETL	national energy technology laboratory	Re	Reynolds number
NIST	national institute of standards and technology	T	temperature in °C
0	optimized	ΔT_d	design temperature approach in °C
PCHE	printed circuit heat exchanger	t_2	wall thickness in m
PDE	partial differential equation	t_3	ridge width in m
RCBC	recompression closed Brayton cycle	t_e	equivalent wall thickness in m
sCO_2	supercritical carbon dioxide	U	internal energy in kJ/kmol; overall heat transfer coeffi-
SQP	successive quadratic programming		cient in $W/m^2/^{\circ}C$
SRBC	simple recuperated Brayton cycle	UA	heat conductance in kW/°C
STEP	supercritical transformational electric power	V	molar volume in m ³ /kmol
TIT	Tokyo institute of technology	v	velocity in m/s
			•
Roman s	symbols	Greek s	ymbols
A_c	cross-section area of metal wall per channel in m ²	α	wave angle
C_p	specific heat in kJ/kg/°C	ρ	density in kg/m ³
D_c	channel width in m	au	time constant in s
D_e	hydraulic diameter in m		
f	Darcy friction factor	Subscripts	
F_m	mass flowrate in kg/s		
G	molar flowrate in kmol/s	c	cold fluid
h	heat transfer coefficient in kW/m ² /°C	h	hot fluid
H	Molar enthalpy in kJ/kmol	in	inlet
k	thermal conductivity in W/m/°C	k	index of sub-exchanger
L_c	actual channel length in m	out	outlet
L_w	wave length in m	w	wall

the steam cycle, because the lowest pressure is slightly above the critical pressure of CO₂, while the maximum pressure is constrained due to the capital cost and mechanical design of the critical equipment as well as piping and measurement system [1]. The previous works of Dyreby et al. [6] and Zitney et al. [7] indicate that the sCO2 turbine outlet temperature is still high, and the heat recuperation between the hot turbine outlet stream and the cold compressed inlet stream is important to the overall efficiency, performance, and dynamic behavior of an sCO₂ Brayton cycle. In an optimally designed sCO₂ Brayton cycle, the heat duty in the recuperators is expected to be much larger than the net power output and even the heat input [7,8]. For example, in a 10 MWe sCO₂ RCBC power plant, the total heat recovered in the low- and hightemperature recuperators is about 60 MWt, while the required input to the primary heater is only 21 MWt [7]. To reduce RCBC capital cost and plant footprint, specially designed compact heat exchangers are recommended as a better option than conventional shell-and-tube heat exchangers (CSTEs) [9]. Therefore, the effective selection, design, and operation of such recuperators are of crucial importance for the successful demonstration and commercialization of sCO2 Brayton cycles.

Printed circuit heat exchangers (PCHEs) and microtube shell-andtube recuperators (MSTEs) are two promising commercially-available candidates for use as a high-efficiency compact heat recuperator as suggested by Musgrove et al. [10], Le Pierres et al. [11], and Ngo et al. [12]. Recently, PCHEs have been implemented in several small scale sCO₂ test loops such as at the Naval Nuclear Laboratory [13], Sandia National Laboratory [14], and Tokyo Institute of Technology (TIT) [12,15,16]. In addition, they have been widely adopted for next-generation nuclear reactors using cooling mediums such as helium, sCO₂, sodium, and lead [17]. PCHEs are a kind of micro-channel heat exchanger, consisting of many plates etched with a considerable number of micro-wavy channels on each plate [18]. Wavy channels are superior to straight channels in PCHEs due to their enhanced heat transfer performance, but at the cost of higher pressure drop [12,19]. Compared with CSTEs, PCHEs are much smaller and lighter due to their high heat transfer area to volume ratio, and can be operated in a wider range of conditions with reasonable pressure drop [20].

It is noted that several optimization studies are available in the open literature for designing compact heat exchangers with a focus on optimization strategies, such as successive quadratic programming (SQP) [21,22] and genetic algorithms [23]. Those studies also discussed the importance of selecting objective functions and constraints and investigated their effects on the design of exchangers [23,24]. However, those studies were not in general conducted using thermal-hydraulic correlations suitable for supercritical fluids. In addition, those heat

Download English Version:

https://daneshyari.com/en/article/11024340

Download Persian Version:

 $\underline{https://daneshyari.com/article/11024340}$

Daneshyari.com