
Contents lists available at ScienceDirect

Journal of Food Engineering

journal homepage: www.elsevier.com/locate/jfoodeng

A moving boundary model for food isothermal drying and shrinkage: A
shortcut numerical method for estimating the shrinkage factor

A. Adrovera,∗, A. Brasiellob, G. Ponsoa

a Dipartimento di Ingegneria Chimica, Materia e Ambiente, Università degli Studi di Roma “La Sapienza”, via Eudossiana 18, 00184, Roma, Italy
bDipartimento di Ingegneria Industriale, Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084, Fisciano, SA, Italy

A R T I C L E I N F O

Keywords:
Dehydration
Shrinkage
Moving boundary model
Diffusion
Magnetic resonance imaging (MRI)

A B S T R A C T

We exploit prediction capabilities of the moving-boundary model for food isothermal drying proposed in
Adrover et al. (2019). We apply the model to two different sets of literature experimental data resulting from the
air-drying process of eggplant cylinders (two-dimensional problem) and potatoes slices (three-dimensional
problem). These two food materials, both exhibiting non-ideal shrinkage, are characterized by very different
“calibration curves“, i.e. different behaviours of volume reduction V V/ 0 as a function of the rescaled moisture
content X X/ 0. The purpose is twofold: to validate the model for different food materials and different sample
geometries and to propose a simpler numerical approach for estimating the shrinkage factor, thus bypassing too
lengthy analytical calculations and developing a general method that can be easily applied to any sample
geometry and any food material characterized by a non-linear calibration curve.

1. Introduction

Drying is a very common process for food preservation and storage
and mathematical modeling is a very useful task in order to provide
information about process evolution when operating parameters are
varied.

A practical obstacle to a simple and effective modeling is re-
presented by food shrinkage. In point of fact, it is very common that
water transport in food materials occurs together with deep structural
changes and volume reduction (shrinkage) which strongly influence
food quality as well as the drying process evolution (Brasiello et al.,
2011). The intrinsic connection between volume reduction and water
content evolution is supported by a wealth of literature experimental
works (Mayor and Sereno, 2004). Therefore, the main goal of a theo-
retical approach should be to develop a mathematical model able to
capture the evolution of both water content and volume reduction, by
describing the intrinsic two-way coupling between the two phenomena.

In Aprajeeta et al. (2015) and Hassini et al. (2007), volume reduc-
tion is linked to time. However, this is a very simple approach that does
not capture the physics of the process since the volume reduction is not
described in terms of the water content evolution.

In Brasiello et al. (2013, 2017), Ortiz-Garcìa-Carrasco et al. (2015),
López-Méndez et al. (2018), a diffusion coefficient varying with the
water content is introduced. However, none of these models can predict

sample volume reduction and surface deformation in time.
A very computationally expensive model is proposed by Curcio and

Aversa (2014) where the overall volume reduction is derived from the
evolution of the stress tensor evolving with the local values of water
content.

In Adrover et al. (2019) we proposed a moving-boundary model for
the description of food drying with shrinkage, which determines the
sample volume reduction and surface deformation on the basis of the
spatio-temporal evolution of the water content. This model has the
great advantage of capturing all the essential features of the process
with a quite simple formulation and can be applied to any sample
geometry (discoidal, cylindrical, cubic, parallelepiped). The core of the
model is the adoption of a pointwise shrinkage velocity, that, by en-
forcing the analogy between polymer swelling and food drying (Papanu
et al. (1989); Adrover and Nobili (2015)), is equal and opposite in sign
to the water diffusive flux, times a shrinkage factor depending on the
pointwise water volume fraction. The shrinkage factor can be assumed
a priori or can be directly derived from experimental “calibration
curves“ representing the behaviour of the rescaled volume V V/ 0 vs the
rescaled moisture content X X/ 0 (hencefore referred to as moisture
ratio). The introduction of the shrinkage factor gives to the model more
flexibility in the description of drying processes of different food ma-
terials characterized by very different calibration curves.

In Adrover et al. (2019) we adopted the moving boundary model for
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the description of the water content evolution and sample shrinkage
and deformation for potato slices (data from Ortiz-Garcìa-Carrasco
et al. (2015)) thus proposing a fully analytical approach to determine
the optimal shrinkage factor. The analytical approach has been fully
developed for 2-d square samples but it can be generalized to other two
and three dimensional geometries.

In the present paper, we apply the moving boundary model to two
different sets of literature experimental data resulting from the air-
drying process of eggplant cylinders (two-dimensional problem, data
from Adiletta et al. (2014)) and potatoes slices (parallelepipeds, three-
dimensional problem, data from Hassini et al. (2007)). These two food
materials, both exhibiting non-ideal shrinkage, are characterized by
very different calibration curves. The model provides very good results
in terms of prediction of volume reduction, surface deformation, water
content time evolution and water content spatial profiles (compared
with NRM data) for both food materials analyzed. Beyond the objective
of testing the model prediction capabilities for different food materials
and different sample geometries, the main goal of the paper is to pro-
pose a simple numerical approach, alternative to the analytical method,
for estimating the shrinkage factor from experimental calibration
curves, thus bypassing too lengthy analytical calculations and devel-
oping a general method that can be easily applied to any sample geo-
metry and any food material characterized by ideal or non-ideal
shrinkage.

2. Mathematical model

In this section, we preliminary review the model equations derived
in Adrover et al. (2019).

The transport equations describing the space-time evolution of the
water volume fraction ϕ and of the sample domain are

∂
∂

= −∇⋅ − ∇ + = ∇⋅ ∇ − ∈
ϕ
t

D ϕ ϕ D ϕ αϕ V tv x( ) ( (1 )) , ( ) (1)
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where n is the outward-pointing normal unit vector, hm is a mass
transfer coefficient [m/s], ρair is the air density on dry basis [kg dry air/
m3], ρs is the solid (pulp) density [kg pulp/m3 product] and Kp is the
water partition ratio between the gas and the solid phases

= =Y K c ρ K ρ ρ ϕ/ ( / )p s p w s , Y being the air moisture content [kg water/kg
dry air] and ρw the water density [kg water/m3]. The subscript eq
stands for equilibrium values.The pointwise shrinkage velocity

= − = ∇α ϕ α ϕ D ϕv J( ) ( ) (4)

is proportional to the water concentration gradient times a pro-
portionality function α ϕ( ) tuning, at each point of the system, the re-
lationship between water flux J and volume reduction. The shrinkage
velocity =v v|S xb evaluated at each point xb on the boundary of the
physical domain, Eq. (3), controls the boundary shrinkage. The water
diffusivity D is assumed constant in space and time.

By introducing the dimensionless space and time variables
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2 and the dimensionless dif-
ferential operators ∇ = ∇ L˜ / r , ∇⋅= ⋅∇˜

Lr
, Lr being a characteristic reference

length, the moving boundary model equations for the normalized water
volume fraction =ψ ϕ ϕ/ 0 attain the form:
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where Bim is the mass transfer Biot number =Bi Km
h L

D p
ρ
ρ
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s
. Initial

conditions are =V V˜ (0) 0̃, =S S˜ (0) ˜0 and =ψ x(˜ , 0) 1 assuming initial
uniform water distribution.

For the 2-d axial symmetric cylindrical problem analyzed in section
3, the initial sample domain is a cylinder
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ference length =L Rr 0, and introduce the dimensionless space variables
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The dimensionless initial domain is ∈ × −ρ ζ a a( , ) [0,1] [ /2, /2]r r ,
=a L R/r z 0 being the cylinder aspect ratio.
For the 3-d Cartesian problem analyzed in section 4, the initial

sample domain is a rectangle-shaped slice (parallelepiped)
∈ − × − ×x y z L L L L L( , , ) [ /2, /2] [ /2, /2] [0, ]x x y y z . Since < <L L Lz y x

we choose Lz (initial slice thickness) as the reference length =L Lr z,
and introduce the dimensionless space variables
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The dimensionless initial domain is ∈x y z(˜, ˜, ˜)
− × − ×L L L L L L L L[ /(2 ), /(2 )] [ /(2 ), /(2 )] [0,1]x z x z y z y z .

Since drying experiments on parallelepipeds are performed after
covering the bottom surface =z̃ 0 with a thin aluminum film in order to
make the surface waterproof, Eqs. (6) and (7) at =z̃ 0 must be replaced
with
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thus implying that there is no water flux and no vertical movement at
the bottom surface of the parallelepiped.

The 2-d and 3-d moving boundary problems have been numerically
solved using finite elements method (FEM) in Comsol Multiphysics 3.5.
The convection-diffusion package (conservative form) has been coupled
with ALE (Arbitrary Lagrangian Eulerian) moving mesh, allowing re-
meshing during the time evolution of the physical domain. Free dis-
placement induced by boundary velocity conditions has been set.
Lagrangian quadratic elements have been chosen. The linear solver
adopted is UMFPACK, with relative tolerance −10 3 and absolute toler-
ance −10 6. The number of finite elements was × − ×2 10 5 105 5 for 2-d
simulations and × − ×8 10 10 105 5 for 3-d simulations with a non-
uniform mesh. Smaller elements have been located close to the moving
boundaries in order to accurately compute concentration gradients
controlling the velocity of the moving fronts.

The shrinkage factor α ψ( ) can be assumed a priori or estimated, for a
specific food material, from the experimental calibration curve re-
presented by experimental data for the rescaled sample volume V V/ 0 vs
the moisture ratio X X/ 0 evaluated at the same time instants during the
drying process.

In point of fact, from the macroscopic balance equation we obtain
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where ψb is the normalized water volume fraction evaluated in one or
more suitable points, called probe points, lying on the sample surface.
In the following, the choice of probe points as points characterized by
the maximum displacement (i.e. the maximum shrinkage) is adopted
for ψb. We will further discuss in more details such a choice for different
geometries and dimensions of the sample.Only in the case of

= =α ψ C( ) constant, Eq. (11) is an exact equation and can be further
integrated over time, thus obtaining:

− = − =V V C ϕ X X C V V1 / (1 / ) /rw0 0 0 0 (12)
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