Combustion and Flame 198 (2018) 186-204

.

Contents lists available at ScienceDirect .
Combustion

Combustion and Flame

journal homepage: www.elsevier.com/locate/combustflame) =
Using SIMD and SIMT vectorization to evaluate sparse chemical n
kinetic Jacobian matrices and thermochemical source terms et

Nicholas J. Curtis®*, Kyle E. Niemeyer®, Chih-Jen Sung?

2 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
bSchool of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA

ARTICLE INFO ABSTRACT

Article history:

Received 22 March 2018
Revised 4 September 2018
Accepted 5 September 2018

Accurately predicting key combustion phenomena in reactive-flow simulations, e.g., lean blow-out, ex-
tinction/ignition limits and pollutant formation, necessitates the use of detailed chemical kinetics. The
large size and high levels of numerical stiffness typically present in chemical kinetic models rele-
vant to transportation/power-generation applications make the efficient evaluation/factorization of the
chemical kinetic Jacobian and thermochemical source-terms critical to the performance of reactive-flow
codes. Here we investigate the performance of vectorized evaluation of constant-pressure/volume ther-
mochemical source-term and sparse/dense chemical kinetic Jacobians using single-instruction, multiple-
SIMD data (SIMD) and single-instruction, multiple thread (SIMT) paradigms. These are implemented in pyJac,

Keywords:
Chemical kinetics

gl]\;[rTse an open-source, reproducible code generation platform. Selected chemical kinetic models covering the
];cobian range of sizes typically used in reactive-flow simulations were used for demonstration. A new formula-

tion of the chemical kinetic governing equations was derived and verified, resulting in Jacobian sparsities
of 28.6-92.0% for the tested models. Speedups of 3.40-4.08 x were found for shallow-vectorized OpenCL
source-rate evaluation compared with a parallel OpenMP code on an avx2 central processing unit (CPU),
increasing to 6.63-9.44 x and 3.03-4.23 x for sparse and dense chemical kinetic Jacobian evaluation,
respectively. Furthermore, the effect of data-ordering was investigated and a storage pattern specifically
formulated for vectorized evaluation was proposed; as well, the effect of the constant pressure/volume
assumptions and varying vector widths were studied on source-term evaluation performance. Speedups
reached up to 17.60 x and 45.13 x for dense and sparse evaluation on the GPU, and up to 55.11 x and
245.63 x on the CPU over a first-order finite-difference Jacobian approach. Further, dense Jacobian eval-
uation was up to 19.56 x and 2.84 x times faster than a previous version of pyJac on a CPU and GPU,
respectively. Finally, future directions for vectorized chemical kinetic evaluation and sparse linear-algebra
techniques were discussed.

© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction model, if naively implemented via a finite-difference method [1].

These factors often prohibit using detailed chemical kinetics in

As the combustion and reactive-flows community has recog-
nized the importance of detailed chemical kinetics for predictive
reactive-flow simulations [1], chemical kinetic models have grown
in size and complexity to describe current and next-generation fu-
els relevant to transportation and power generation. For example,
a recent biodiesel model [2] consists of 3500 chemical species and
over 17000 reactions. Moreover, the cost of evaluating the chemical
source-terms scales linearly with the size of the model, while eval-
uating and factorizing the chemical kinetic Jacobian respectively
scale quadratically and cubically with the number of species in the

* Corresponding author.
E-mail address: nicholas.curtis@uconn.edu (N.J. Curtis).

https://doi.org/10.1016/j.combustflame.2018.09.008

practice; e.g., in a direct numerical simulation using a 22-species
model, evaluating reaction rates consumed around half of the total
run time [3]. In addition, most common implicit integration tech-
niques need to evaluate and factorize the Jacobian matrix to deal
with stiffness. As a result, these operations are bottlenecks when
using even moderately sized chemical models in realistic reactive-
flow simulations, necessitating other cost-reduction strategies
[1].

A host of techniques have been developed to lessen the com-
putational demand of chemical kinetic calculations while main-
taining fidelity, falling broadly into three categories: removal of
unimportant species and reactions [4-8], lumping of species with
similar thermochemical properties [9-11], and time-scale meth-
ods that reduce numerical stiffness [12-15]. We refer interested

0010-2180/© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.combustflame.2018.09.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2018.09.008&domain=pdf
mailto:nicholas.curtis@uconn.edu
https://doi.org/10.1016/j.combustflame.2018.09.008

N,J. Curtis et al./ Combustion and Flame 198 (2018) 186-204 187

(Instruction Pool)

)

Data Pool
Vector Unit

(

(a) Schematic of SIMD processing.
A single compute unit (e.g., a CPU
core) contains a vector unit with IV,
processing elements (PEs), together
called a vector-lane. The vector unit
executes a single instruction concur-
rently on multiple data.

Thread\

Vector Unit

e
Threalehreadl

Data Pool

Compute Unit)

\

(b) Schematic of SIMT processing.
A single compute unit (e.g., a GPU
streaming multiprocessor) contains
many processing elements (PEs) and
hosts many threads, each with an in-
struction to execute (I1, 12). Threads
with the same instruction execute
concurrently on multiple data while
the others must wait (leading to
thread divergence).

Fig. 1. Simple diagrams explaining the fundamentals of the SIMD and SIMT vector-processing paradigms.

readers to the recent review by Turdnyi and Tomlin [16] for a com-
prehensive overview.

In addition to the previously mentioned cost reduction meth-
ods, effort has gone into improving the integration algorithms and
codes that evaluate the chemical kinetics [15,17-19]. In particu-
lar, a carefully derived analytical formulation of the Jacobian ma-
trix can greatly increase sparsity [17] and drop the cost of Ja-
cobian evaluation to linearly depend on the number of species
in the model [1]; sparse-matrix techniques can then reduce
the cost of Jacobian factorization [20]. In addition, studies have
shown that Single-Instruction, Multiple-Data (SIMD) and the re-
lated Single-Instruction, Multiple-Thread (SIMT) processors can ac-
celerate chemical kinetic simulations [18,21-25].

SIMD and SIMT programming are two important vector-
processing paradigms used increasingly in scientific computing.
Traditional multicore parallelism is now used to increase cen-
tral processing unit (CPU) performance, as the exponential growth
in processing power—colloquially known as Moore’s law—has
slowed [26]. Recently, SIMD/SIMT processors, e.g., in the form of
graphics processing units (GPUs), have gained recognition due to
their increased floating operation throughput. The parallel pro-
gramming standard OpenCL [27] has further enabled adoption of
vector processing in scientific computing by providing a common
application program interface (API) for execution on heterogeneous
systems, e.g., CPU, GPU, or Intel’s Many Integrated Core (MIC) ar-
chitecture. Here we will largely use OpenCL terminology to de-
scribe these processing paradigms, as it provides a convenient
way to classify otherwise disparate processor types (e.g., CPUs and
GPUs). However, the concepts discussed herein broadly apply to
SIMD/SIMT processing.

A typical modern CPU contains multiple compute units (i.e.,
cores), each with specialized vector processing units capable of
running SIMD instructions, as Fig. 1a depicts. A SIMD instruction
uses the vector processor to execute the same floating-point oper-
ation (e.g., multiplication, division) on different data concurrently.

The vector-width is the number of possible concurrent opera-
tions, typically around two to four in double precision.! Special-
ized hardware accelerators have also been developed, like Intel’s
Xeon Phi co-processor (i.e., the MIC architecture), that have tens
of cores with wide vector-widths (e.g., 4-8 double-precision op-
erations). Cutting-edge and forthcoming Intel CPUs also include
these wide vector-widths, like the Skylake Xeon and Cannon Lake
architectures.

Modern GPUs rely on the related computing paradigm of SIMT
processing, where a single compute element hosts large numbers
of threads (a streaming multiprocessor in Nvidia terminology) [28].
Figure 1b depicts a SIMT compute unit, where a group of threads—
typically 32, known as a warp on Nvidia GPUs—execute the same
SIMT instruction on multiple data concurrently. If some threads
must execute a different instruction, they are forced to wait and
execute later; this may occur due to if/then branching or predica-
tion. This phenomenon, known as thread-divergence, is a key con-
sideration for SIMT processing and can cause serious performance
degradation for complicated algorithms [24].

1.1. Related work

Recognizing the need to accelerate chemical-kinetic Jacobian
evaluation and factorization, a number of recent works have been
published on constructing analytical Jacobian matrices; although as
will be discussed at the end of this section, here we offer several
key improvements over past efforts. Schwer et al. [17] were among
the first to recognize the critical importance of a sparse analyti-
cal Jacobian to accelerate chemical kinetic simulations. Later, Safta
et al. [29] developed the TChem software package, which was one
of the first developed that provides analytical Jacobian evaluation.

T OpenCL allows for use of vector-widths different from the actual hardware
vector-width via implicit conversion, and may provide some performance benefit
as Section 3.5 discusses.

Download English Version:

hitps://daneshyari.com/en/article/11024445

Download Persian Version:

https://daneshyari.com/article/11024445

Daneshyari.com

https://daneshyari.com/en/article/11024445
https://daneshyari.com/article/11024445
https://daneshyari.com

