

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Nonblockers in homogeneous continua

C. Piceno

 $\label{lem:condition} Universidad\ de\ las\ Américas\ Puebla,\ Sta.\ Catarina\ Mártir,\ San\ Andrés\ Cholula,\ Puebla,\ C.P.\ 72810,\ Mexico$

ARTICLE INFO

Article history:
Received 8 August 2018
Received in revised form 3
September 2018
Accepted 15 September 2018
Available online 18 September 2018

MSC: primary 54B20, 54F15

Keywords: Continuum Hyperspace Order arc Nonblocker Homogeneous

ABSTRACT

Given a continuum X, an element $A \in 2^X \setminus \{X\}$ is said to be a set that does not block singletons of X provided that for every point $x \in X \setminus A$, there exists an order arc $\alpha : [0,1] \to C(X)$ such that $\alpha(0) = \{x\}$, $\alpha(1) = X$ and $\alpha(t) \cap A = \emptyset$ for all $t \in [0,1)$. If A does not block singletons of X, we say that A is a nonblocker of X. In this paper, we present some properties about the sets that do not block singletons and, for a homogeneous curve X, we use the set $\mathcal{NB}(\mathcal{F}_1(X))$ to construct a continuous decomposition of X that is a homogeneous curve and a Whitney level of C(X), where its elements are homogeneous, acyclic, hereditarily unicoherent and indecomposable continuum. Also, we prove that if X is a continuum such that $\mathcal{NB}(\mathcal{F}_1(X)) = \mathcal{F}_1(X)$, then the next three properties are equivalent: 1) X is a homogeneous continuum, 2) X has the property that for all $x \in X$, there exists a proper subcontinuum X of X such that $X \in Int(X)$, and 3) $X \approx \mathcal{S}^1$.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the concept of nonblocker of a continuum X and the hyperspace that consists of all the nonblockers of X (defined in [3] and denoted by $\mathcal{NB}(\mathcal{F}_1(X))$). In the Section 3, we develop some general results concerning to nonblockers of X. In Section 4, we present some results concerning to the study of $\mathcal{NB}(\mathcal{F}_1(X))$ of homogeneous continua, particularly we show results about continuous decomposition of homogeneous curves X generated by the set $\mathcal{NB}(\mathcal{F}_1(X))$ (Corollary 4.5).

Finally, in Theorem 4.4 of [4] the authors prove that if X is locally connected, then $\mathcal{NB}(\mathcal{F}_1(X)) = \mathcal{F}_1(X)$ if and only if $X \approx S^1$. In Section 5, we reduce the hypothesis used in Theorem 4.4 of [4] and obtain other equivalences presented in Theorem 5.4.

2. Definitions and notation

Given a subset A of a metric space Z with metric d, the closure, the boundary and the interior of A are denoted by $Cl_Z(A)$, $Bd_Z(A)$ and $Int_Z(A)$, respectively. Also, $\mathcal{V}_r(A)$ denotes the open ball of radius r

about A. A map is a continuous function. A continuum is a nonempty compact connected metric space. A continuum X is aposyndetic at p with respect to q, where $p,q\in X$, provided that there is a subcontinuum A of $X\setminus\{q\}$ such that $p\in Int_X(A)$. A continuum X is aposyndetic at p provided that X is aposyndetic at p with respect to each point $q\in X\setminus\{p\}$. A continuum is homogeneous if for any two points p and q of X, there exists a homeomorphism p from p to itself such that p and p and p is connected that whenever p and p are closed connected subsets of p such that p and p is connected. A continuum p is indecomposable provided that p cannot be written as the union of two of its proper subcontinua. A set p is continuumwise connected if any pair of points in p belong to a subcontinuum of p and p and any point p and p and any point p and p are continuum p is a non-dimensional continuum. S¹ = p and p is for any nondegenerate continuum p and any point p and p are continuous functions.

$$k(p) = \{x \in X : \text{ there is a proper subcontinuum } A \text{ of } X \text{ such that } p, x \in A\}.$$

The sets k(p) are called *composants* of X.

Given a continuum X, we consider the following hyperspaces of X:

$$2^{X} = \{ A \subset X : A \text{ is nonempty and closed} \},$$

$$C_{n}(X) = \{ A \in 2^{X} : A \text{ has at most } n \text{ components} \}$$

and

$$\mathcal{F}_n(X) = \{ A \in \mathcal{C}(X) : A \text{ has at most } n \text{ elements} \},$$

where n is a positive integer. $C_n(X)$ and $F_n(X)$ are called the n-fold hyperspace of X and the n-fold symmetric product of X respectively. These spaces are topologized with the Hausdorff metric defined as follows:

$$\mathcal{H}(A,B) = \inf \{ \epsilon > 0 : A \subset \mathcal{V}_{\epsilon}(B) \text{ and } B \subset \mathcal{V}_{\epsilon}(A) \},$$

 \mathcal{H} always denotes the Hausdorff metric on 2^X . When n=1, we write $\mathcal{C}(X)$ instead of $\mathcal{C}_1(X)$.

Clearly $\mathcal{F}_n(X) \subset \mathcal{C}_n(X) \subset 2^X$ and $\mathcal{F}_1(X) \approx X$. It is known that if X is a continuum then 2^X , $\mathcal{C}(X)$ (Theorem 1.13 of [10]) and $\mathcal{C}_n(X)$ (Corollary 1.8.12 of [7]) are arcwise connected continua. Also, $\mathcal{F}_n(X)$ is a continuum for all positives integers n (p. 887 of [2]).

Let X_1, X_2, \ldots, X_m be a finite collection of subsets of X. We define the subset $\langle X_1, X_2, \ldots, X_m \rangle_n$ of $\mathcal{C}_n(X)$ by $\langle X_1, X_2, \ldots, X_m \rangle_n = \{A \in \mathcal{C}_n(X) : A \subset X_1 \cup \ldots \cup X_m \text{ and } A \cap X_k \neq \emptyset \text{ for } k = 1, \ldots, m\}.$

It is known that if X_1, X_2, \ldots, X_m are closed subsets of X, then $\langle X_1, X_2, \ldots, X_m \rangle_n$ is closed in $\mathcal{C}_n(X)$ and that the collection of all subsets of $\mathcal{C}_n(X)$ of the form $\langle U_1, U_2, \ldots, U_m \rangle_n$, where U_1, U_2, \ldots, U_m are open subsets of X, is a base for the topology of $\mathcal{C}_n(X)$ (see [6]).

A path in 2^X from A to B is a map $\gamma:[0,1]\to 2^X$ such that $\gamma(0)=A$ and $\gamma(1)=B$. An order arc in 2^X is an arc $\alpha:[0,1]\to 2^X$ such that if $0\leq s< t\leq 1$, then $\alpha(s)\subset\alpha(t)$ and $\alpha(s)\neq\alpha(t)$. By Lemma 1.11 of [10], if $\alpha(0)\in\mathcal{F}_1(X)$, then $\alpha([0,1])\subset\mathcal{C}(X)$.

A map $\mu: \mathcal{C}(X) \to [0, \infty)$ is said to be a Whitney map provided that:

```
    μ(A) = 0 for every A ∈ F₁(X);
    if A ⊂ B and A ≠ B, then μ(A) < μ(B).</li>
```

Since X is nondegenerate, we may assume that $\mu(X) = 1$. By (0.50.3) of [10], Whitney maps exist for each continuum X.

Download English Version:

https://daneshyari.com/en/article/11024706

Download Persian Version:

https://daneshyari.com/article/11024706

<u>Daneshyari.com</u>