Journal of Algebra 516 (2018) 298-328

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Universal enveloping associative Rota–Baxter algebras of preassociative and postassociative algebra

ALGEBRA

V. Gubarev

Sobolev Institute of Mathematics of the SB RAS, Acad. Koptyug ave., 4, Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russia

ARTICLE INFO

Article history: Received 21 August 2017 Available online 24 September 2018 Communicated by Alberto Elduque

Keywords: Rota–Baxter algebra Universal enveloping algebra PBW-pair of varieties Preassociative algebra Postassociative algebra

ABSTRACT

Universal enveloping Rota–Baxter algebras of preassociative and postassociative algebras are constructed. The question of Li Guo is answered: the pair of varieties (RB_{λ}As, postAs) is a PBW-pair and the pair (RBAs, preAs) is not.

© 2018 Elsevier Inc. All rights reserved.

Introduction

Linear operator R defined on an algebra A over the key field k is called Rota–Baxter operator (RB-operator, for short) of a weight $\lambda \in k$ if it satisfies the relation

$$R(x)R(y) = R(R(x)y + xR(y) + \lambda xy), \quad x, y \in A.$$
(1)

An algebra with given RB-operator acting on it is called Rota–Baxter algebra (RB-algebra, for short).

E-mail address: vsevolodgu@math.nsc.ru.

 $[\]label{eq:https://doi.org/10.1016/j.jalgebra.2018.09.017\\0021-8693/© 2018 Elsevier Inc. All rights reserved.$

G. Baxter defined (commutative) RB-algebra in 1960 [4], solving an analytic problem. The relation (1) with $\lambda = 0$ appeared as a generalization of the integration by parts formula. J.-C. Rota and others [32,9] studied combinatorial properties of RB-operators and RB-algebras. In 1980s, the deep connection between Lie RB-algebras and Yang– Baxter equation was found [5,33]. To the moment, there are a lot of applications of RB-operators in mathematical physics, combinatorics, number theory, and operad theory [11,12,15,21].

There exist different constructions of free commutative RB-algebra, see the articles of J.-C. Rota, P. Cartier, and L. Guo [32,9,25]. In 2008, K. Ebrahimi-Fard and L. Guo obtained free associative RB-algebra [16,17]. In 2010, L.A. Bokut et al. [8] got a linear basis of free associative RB-algebra with the help of Gröbner–Shirshov technique. Diverse linear bases of free Lie RB-algebra were recently found in [20,23,31].

Pre-Lie algebras were introduced in 1960s independently by E.B. Vinberg, M. Gerstenhaber, and J.-L. Koszul [35,18,26], pre-Lie algebras satisfy the identity $(x_1x_2)x_3 - x_1(x_2x_3) = (x_2x_1)x_3 - x_2(x_1x_3)$.

J.-L. Loday [28] defined the notion of (associative) dendriform dialgebra, we will call it preassociative algebra or associative prealgebra. Preassociative algebra is a vector space with two bilinear operations \succ, \prec satisfying the identities

$$(x_1 \succ x_2 + x_1 \prec x_2) \succ x_3 = x_1 \succ (x_2 \succ x_3), \quad (x_1 \succ x_2) \prec x_3 = x_1 \succ (x_2 \prec x_3),$$
$$x_1 \prec (x_2 \succ x_3 + x_2 \prec x_3) = (x_1 \prec x_2) \prec x_3.$$

In [27], J.-L. Loday also defined Zinbiel algebra (we will call it as precommutative algebra), on which the identity $(x_1 \succ x_2 + x_2 \succ x_1) \succ x_3 = x_1 \succ (x_2 \succ x_3)$ holds. Any preassociative algebra with the identity $x \succ y = y \prec x$ is a precommutative algebra and with respect to the new operation $x \cdot y = x \succ y - y \prec x$ is a pre-Lie algebra. In September 2018, it was proven in [13] that the pair of varieties of pre-Lie and preassociative algebras is a Poincaré–Birkhoff–Witt pair (PBW-pair) [30].

In [29], there was also defined (associative) dendriform trialgebra, i.e., an algebra with the operations \prec, \succ, \cdot satisfying certain 7 axioms. (We will call such algebra as postassociative algebra or associative postalgebra.) Post-Lie algebra [34] is an algebra with two bilinear operations [,] and \cdot ; moreover, Lie identities with respect to [,] hold and the next identities are satisfied:

$$(x \cdot y) \cdot z - x \cdot (y \cdot z) - (y \cdot x) \cdot z + y \cdot (x \cdot z) = [y, x] \cdot z, \quad x \cdot [y, z] = [x \cdot y, z] + [y, x \cdot z].$$

Given a binary operad \mathcal{P} , the notion of successor [2] provides the defining identities for pre- and post- \mathcal{P} -algebras. Equivalently, one can define the operad of pre- and post- \mathcal{P} -algebras as $\mathcal{P} \bullet$ PreLie and $\mathcal{P} \bullet$ PostLie respectively. Here PreLie denotes the operad of pre-Lie algebras and PostLie — the operad of post-Lie algebras, $\mathcal{V} \bullet \mathcal{W}$ is the black Manin product of operads \mathcal{V} , \mathcal{W} (see [19] about operads and Manin products). Download English Version:

https://daneshyari.com/en/article/11024734

Download Persian Version:

https://daneshyari.com/article/11024734

Daneshyari.com