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Universal enveloping Rota–Baxter algebras of preassociative 
and postassociative algebras are constructed. The question of 
Li Guo is answered: the pair of varieties (RBλAs, postAs) is 
a PBW-pair and the pair (RBAs, preAs) is not.
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Introduction

Linear operator R defined on an algebra A over the key field k is called Rota–Baxter 
operator (RB-operator, for short) of a weight λ ∈ k if it satisfies the relation

R(x)R(y) = R(R(x)y + xR(y) + λxy), x, y ∈ A. (1)

An algebra with given RB-operator acting on it is called Rota–Baxter algebra (RB-
algebra, for short).
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G. Baxter defined (commutative) RB-algebra in 1960 [4], solving an analytic prob-
lem. The relation (1) with λ = 0 appeared as a generalization of the integration by parts 
formula. J.-C. Rota and others [32,9] studied combinatorial properties of RB-operators 
and RB-algebras. In 1980s, the deep connection between Lie RB-algebras and Yang–
Baxter equation was found [5,33]. To the moment, there are a lot of applications of 
RB-operators in mathematical physics, combinatorics, number theory, and operad the-
ory [11,12,15,21].

There exist different constructions of free commutative RB-algebra, see the articles 
of J.-C. Rota, P. Cartier, and L. Guo [32,9,25]. In 2008, K. Ebrahimi-Fard and L. Guo 
obtained free associative RB-algebra [16,17]. In 2010, L.A. Bokut et al. [8] got a linear 
basis of free associative RB-algebra with the help of Gröbner–Shirshov technique. Diverse 
linear bases of free Lie RB-algebra were recently found in [20,23,31].

Pre-Lie algebras were introduced in 1960s independently by E.B. Vinberg, M. Ger-
stenhaber, and J.-L. Koszul [35,18,26], pre-Lie algebras satisfy the identity (x1x2)x3 −
x1(x2x3) = (x2x1)x3 − x2(x1x3).

J.-L. Loday [28] defined the notion of (associative) dendriform dialgebra, we will call it 
preassociative algebra or associative prealgebra. Preassociative algebra is a vector space 
with two bilinear operations �, ≺ satisfying the identities

(x1 � x2 + x1 ≺ x2) � x3 = x1 � (x2 � x3), (x1 � x2) ≺ x3 = x1 � (x2 ≺ x3),

x1 ≺ (x2 � x3 + x2 ≺ x3) = (x1 ≺ x2) ≺ x3.

In [27], J.-L. Loday also defined Zinbiel algebra (we will call it as precommutative 
algebra), on which the identity (x1 � x2 + x2 � x1) � x3 = x1 � (x2 � x3) holds. Any 
preassociative algebra with the identity x � y = y ≺ x is a precommutative algebra and 
with respect to the new operation x ·y = x � y−y ≺ x is a pre-Lie algebra. In September 
2018, it was proven in [13] that the pair of varieties of pre-Lie and preassociative algebras 
is a Poincaré–Birkhoff–Witt pair (PBW-pair) [30].

In [29], there was also defined (associative) dendriform trialgebra, i.e., an algebra 
with the operations ≺, �, · satisfying certain 7 axioms. (We will call such algebra as 
postassociative algebra or associative postalgebra.) Post-Lie algebra [34] is an algebra 
with two bilinear operations [, ] and ·; moreover, Lie identities with respect to [, ] hold 
and the next identities are satisfied:

(x · y) · z − x · (y · z) − (y · x) · z + y · (x · z) = [y, x] · z, x · [y, z] = [x · y, z] + [y, x · z].

Given a binary operad P, the notion of successor [2] provides the defining identi-
ties for pre- and post-P-algebras. Equivalently, one can define the operad of pre- and 
post-P-algebras as P • PreLie and P • PostLie respectively. Here PreLie denotes the 
operad of pre-Lie algebras and PostLie — the operad of post-Lie algebras, V •W is the 
black Manin product of operads V, W (see [19] about operads and Manin products). 
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