The Hilton-Milner theorem for finite affine spaces
 Jun Guo
 College of Mathematics and Information Science, Langfang Normal University, Langfang 065000, China

A R T I C L E I N F O

Article history:

Received 1 March 2017
Received in revised form 14 May 2018
Accepted 24 September 2018
Available online xxxx
Communicated by Olga Polverino
$M S C$:
05D05

Keywords:
Hilton-Milner theorem
Intersecting family
Affine space
Flat

Abstract

Suppose $3 \leq 2 k+1<n$. Let $A G\left(n, \mathbb{F}_{q}\right)$ be the n-dimensional affine space over the finite field \mathbb{F}_{q} and $\mathcal{M}(k, n)$ be the set of all k-flats in $A G\left(n, \mathbb{F}_{q}\right)$. Suppose that $\mathcal{F} \subseteq \mathcal{M}(k, n)$ is an intersecting family with $\bigcap_{F \in \mathcal{F}} F=\emptyset$. In this paper, we show $\left.|\mathcal{F}| \leq 1+\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]_{q}+\sum_{i=0}^{k-1} q^{i(i+1)}\right)\left(q^{k-i}-1\right)\left[\begin{array}{c}n-1-k \\ i\end{array}\right]_{q}\left[\begin{array}{c}k \\ i\end{array}\right]_{q}$, and describe the structure of \mathcal{F} which reaches this bound.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

For positive integers k and n with $k \leq n$, let $[n]=\{1,2, \ldots, n\}$ and $\binom{[n]}{k}$ be the collection of all k-subsets of $[n]$. A family $\mathcal{F} \subseteq\binom{[n]}{k}$ is called intersecting if $|A \cap B| \geq 1$ for all $A, B \in \mathcal{F}$. Erdős, Ko and Rado [5] determined the maximum size of an intersecting family.

[^0]https://doi.org/10.1016/j.ffa.2018.09.008
1071-5797/® 2018 Elsevier Inc. All rights reserved.

Theorem 1.1 (Erdős-Ko-Rado). Let $n \geq 2 k+1$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ be an intersecting family. Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$. Equality holds only if $\mathcal{F}=\left\{\left.A \in\binom{[n]}{k} \right\rvert\, i \in A\right\}$ for some $i \in[n]$.

For any family $\mathcal{F} \subseteq\binom{[n]}{k}$, the covering number $\tau(\mathcal{F})$ is the minimum size of a subset of [n] that meets all $A \in \mathcal{F}$. From Theorem 1.1 we deduce that if $n \geq 2 k+1$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ is an intersecting family of maximum size, then $\tau(\mathcal{F})=1$.

Let $\mathcal{F} \subseteq\binom{[n]}{k}$ be an intersecting family with $\tau(\mathcal{F}) \geq 2$. Hilton and Milner [11] determined the maximum size of \mathcal{F}. Frankl and Füredi [6] gave a different proof for the same result.

Theorem 1.2 (Hilton-Milner). Let $n \geq 2 k+1 \geq 5$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ be an intersecting family with $\tau(\mathcal{F}) \geq 2$. Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$. Equality holds only if
(i) $\mathcal{F}=\{A\} \cup\left\{\left.B \in\binom{[n]}{k} \right\rvert\, i \in B, A \cap B \neq \emptyset\right\}$ for some k-subset A of $[n]$ and $i \in[n] \backslash A$.
(ii) $\mathcal{F}=\left\{\left.B \in\binom{[n]}{3}| | A \cap B \right\rvert\, \geq 2\right\}$ for some 3 -subset A of $[n]$ if $k=3$.

This theorem is called the Hilton-Milner theorem now. Over the years, there have been many intersecting extensions for this result. See [1] for vector spaces, [8] for bilinear forms graphs, [13] for set partitions, and [14] for weak compositions.

Let \mathbb{F}_{q} be the finite field with q elements, where q is a prime power. Let \mathbb{F}_{q}^{n} be the n-dimensional row vector space over \mathbb{F}_{q} and $\left[\begin{array}{c}{[n]} \\ m\end{array}\right]$ be the set of all m-dimensional subspaces of \mathbb{F}_{q}^{n}, where $0 \leq m \leq n$. For brevity we use the Gaussian coefficient

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\prod_{i=n-k+1}^{n}\left(q^{i}-1\right) / \prod_{i=1}^{k}\left(q^{i}-1\right)
$$

By convenience $\left[\begin{array}{l}n \\ 0\end{array}\right]_{q}=1$ and $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=0$ whenever $k<0$ or $n<k$. Then the size of $\left[\begin{array}{c}{[n]} \\ m\end{array}\right]$ is $\left[\begin{array}{l}n \\ m\end{array}\right]_{q}$. A family $\mathcal{F} \subseteq\left[\begin{array}{c}{[n]} \\ k\end{array}\right]$ is called intersecting if $\operatorname{dim}(A \cap B) \geq 1$ for all $A, B \in \mathcal{F}$. Hsieh [12] determined the maximum size of an intersecting family. For different proofs of the same result, see [4] and [7].

Theorem 1.3 (Hsieh). Let $n \geq 2 k+1$ and $\mathcal{F} \subseteq\left[\begin{array}{c}{[n]} \\ k\end{array}\right]$ be an intersecting family. Then $|\mathcal{F}| \leq\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]_{q}$. Equality holds only if $\mathcal{F}=\left\{\left.A \in\left[\begin{array}{c}{[n]} \\ k\end{array}\right] \right\rvert\, E \subseteq A\right\}$ for some subspace $E \in\left[\begin{array}{c}{[n]} \\ 1\end{array}\right]$.

For any family $\mathcal{F} \subseteq\left[\begin{array}{c}{[n]} \\ k\end{array}\right]$, the covering number $\tau(\mathcal{F})$ is the minimum dimension of a subspace of \mathbb{F}_{q}^{n} that intersects all $A \in \mathcal{F}$. From Theorem 1.3 we deduce that if $n \geq 2 k+1$ and $\mathcal{F} \subseteq\left[\begin{array}{c}{[n]} \\ k\end{array}\right]$ is an intersecting family of maximum size, then $\tau(\mathcal{F})=1$.

Let $\mathcal{F} \subseteq\left[\begin{array}{c}{[n]} \\ k\end{array}\right]$ be an intersecting family with $\tau(\mathcal{F}) \geq 2$. Blokhuis et al. [1] determined the maximum size of \mathcal{F}.

https://daneshyari.com/en/article/11024748

Download Persian Version:
https://daneshyari.com/article/11024748

Daneshyari.com

[^0]: E-mail address: guojun_1f@163.com.

