

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

The Hilton–Milner theorem for finite affine spaces

 $College \ of \ Mathematics \ and \ Information \ Science, \ Langfang \ Normal \ University, \ Langfang \ 065000, \ China$

ARTICLE INFO

Article history: Received 1 March 2017 Received in revised form 14 May 2018 Accepted 24 September 2018 Available online xxxx Communicated by Olga Polverino

MSC: 05D05

Keywords: Hilton–Milner theorem Intersecting family Affine space Flat

ABSTRACT

Suppose $3 \leq 2k+1 < n$. Let $AG(n, \mathbb{F}_q)$ be the *n*-dimensional affine space over the finite field \mathbb{F}_q and $\mathcal{M}(k, n)$ be the set of all *k*-flats in $AG(n, \mathbb{F}_q)$. Suppose that $\mathcal{F} \subseteq \mathcal{M}(k, n)$ is an intersecting family with $\bigcap_{F \in \mathcal{F}} F = \emptyset$. In this paper, we show $|\mathcal{F}| \leq 1 + {n-1 \brack k-1}_q + \sum_{i=0}^{k-1} q^{i(i+1)})(q^{k-i}-1){n-1-k \brack i}_q {k \brack i}_q$, and describe the structure of \mathcal{F} which reaches this bound.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

For positive integers k and n with $k \leq n$, let $[n] = \{1, 2, ..., n\}$ and $\binom{[n]}{k}$ be the collection of all k-subsets of [n]. A family $\mathcal{F} \subseteq \binom{[n]}{k}$ is called *intersecting* if $|A \cap B| \geq 1$ for all $A, B \in \mathcal{F}$. Erdős, Ko and Rado [5] determined the maximum size of an intersecting family.

https://doi.org/10.1016/j.ffa.2018.09.008 1071-5797/© 2018 Elsevier Inc. All rights reserved.

E-mail address: guojun_lf@163.com.

Theorem 1.1 (Erdős–Ko–Rado). Let $n \ge 2k+1$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ be an intersecting family. Then $|\mathcal{F}| \le {\binom{n-1}{k-1}}$. Equality holds only if $\mathcal{F} = \{A \in {\binom{[n]}{k}} \mid i \in A\}$ for some $i \in [n]$.

For any family $\mathcal{F} \subseteq {\binom{[n]}{k}}$, the covering number $\tau(\mathcal{F})$ is the minimum size of a subset of [n] that meets all $A \in \mathcal{F}$. From Theorem 1.1 we deduce that if $n \geq 2k+1$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is an intersecting family of maximum size, then $\tau(\mathcal{F}) = 1$.

Let $\mathcal{F} \subseteq {\binom{[n]}{k}}$ be an intersecting family with $\tau(\mathcal{F}) \geq 2$. Hilton and Milner [11] determined the maximum size of \mathcal{F} . Frankl and Füredi [6] gave a different proof for the same result.

Theorem 1.2 (Hilton–Milner). Let $n \ge 2k+1 \ge 5$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ be an intersecting family with $\tau(\mathcal{F}) \ge 2$. Then $|\mathcal{F}| \le {\binom{n-1}{k-1}} - {\binom{n-k-1}{k-1}} + 1$. Equality holds only if

(i) $\mathcal{F} = \{A\} \cup \{B \in {[n] \choose k} \mid i \in B, A \cap B \neq \emptyset\}$ for some k-subset A of [n] and $i \in [n] \setminus A$. (ii) $\mathcal{F} = \{B \in {[n] \choose 3} \mid |A \cap B| \ge 2\}$ for some 3-subset A of [n] if k = 3.

This theorem is called the Hilton–Milner theorem now. Over the years, there have been many intersecting extensions for this result. See [1] for vector spaces, [8] for bilinear forms graphs, [13] for set partitions, and [14] for weak compositions.

Let \mathbb{F}_q be the finite field with q elements, where q is a prime power. Let \mathbb{F}_q^n be the *n*-dimensional row vector space over \mathbb{F}_q and $\binom{[n]}{m}$ be the set of all *m*-dimensional subspaces of \mathbb{F}_q^n , where $0 \leq m \leq n$. For brevity we use the Gaussian coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_{i=n-k+1}^n (q^i - 1) / \prod_{i=1}^k (q^i - 1).$$

By convenience $\begin{bmatrix} n \\ 0 \end{bmatrix}_q = 1$ and $\begin{bmatrix} n \\ k \end{bmatrix}_q = 0$ whenever k < 0 or n < k. Then the size of $\begin{bmatrix} [n] \\ m \end{bmatrix}$ is $\begin{bmatrix} n \\ m \end{bmatrix}_{q}$. A family $\mathcal{F} \subseteq \begin{bmatrix} [n] \\ k \end{bmatrix}$ is called *intersecting* if dim $(A \cap B) \ge 1$ for all $A, B \in \mathcal{F}$. Hsieh [12] determined the maximum size of an intersecting family. For different proofs of the same result, see [4] and [7].

Theorem 1.3 (Hsieh). Let $n \ge 2k + 1$ and $\mathcal{F} \subseteq \begin{bmatrix} n \\ k \end{bmatrix}$ be an intersecting family. Then $|\mathcal{F}| \le \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q$. Equality holds only if $\mathcal{F} = \{A \in \begin{bmatrix} n \\ k \end{bmatrix} \mid E \subseteq A\}$ for some subspace $E \in \begin{bmatrix} n \\ 1 \end{bmatrix}$.

For any family $\mathcal{F} \subseteq \begin{bmatrix} [n] \\ k \end{bmatrix}$, the covering number $\tau(\mathcal{F})$ is the minimum dimension of a subspace of \mathbb{F}_q^n that intersects all $A \in \mathcal{F}$. From Theorem 1.3 we deduce that if $n \geq 2k+1$ and $\mathcal{F} \subseteq {[n] \brack k}$ is an intersecting family of maximum size, then $\tau(\mathcal{F}) = 1$. Let $\mathcal{F} \subseteq {[n] \atop k}$ be an intersecting family with $\tau(\mathcal{F}) \ge 2$. Blokhuis et al. [1] determined

the maximum size of \mathcal{F} .

Download English Version:

https://daneshyari.com/en/article/11024748

Download Persian Version:

https://daneshyari.com/article/11024748

Daneshyari.com