Accepted Manuscript #### Research papers Daily pan evaporation modeling from local and cross-station data using three tree-basedmachine learning models Xianghui Lu, Yan Ju, Lifeng Wu, Junliang Fan, Fucang Zhang, Zhijun Li PII: S0022-1694(18)30749-2 DOI: https://doi.org/10.1016/j.jhydrol.2018.09.055 Reference: HYDROL 23152 To appear in: Journal of Hydrology Received Date: 15 July 2018 Revised Date: 6 September 2018 Accepted Date: 26 September 2018 Please cite this article as: Lu, X., Ju, Y., Wu, L., Fan, J., Zhang, F., Li, Z., Daily pan evaporation modeling from local and cross-station data using three tree-basedmachine learning models, *Journal of Hydrology* (2018), doi: https://doi.org/10.1016/j.jhydrol.2018.09.055 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## **ACCEPTED MANUSCRIPT** Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models Xianghui Lua, Yan Jua, Lifeng Wua,b, Junliang Fanb,*, Fucang Zhangb, Zhijun Lib ^aSchool of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China bKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Yangling 712100, China * Corresponding author. Dr. Junliang Fan College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China E-mail: nwwfjl@163.com **Abstract** Accurate estimation of pan evaporation (E_p) is required for many applications, e.g., water resources management, irrigation system design and hydrological modeling. However, the estimation of E_D for a target station can be difficult as a result of partial or complete lack of local meteorological data under many conditions. In this study, daily E_p was estimated from local (target-station) and cross-station data in the Poyang Lake Watershed of China using four empirical models and three tree-based machine learning models, including M5 model tree (M5Tree), random forests (RF_s) and gradient boosting decision tree (GBDT). Daily meteorological data during 2001-2010 from 16 weather stations were used to train the models, while the data from 2011 to 2015 were used for testing. Two cross-station ### Download English Version: # https://daneshyari.com/en/article/11024762 Download Persian Version: https://daneshyari.com/article/11024762 <u>Daneshyari.com</u>