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A B S T R A C T

Improving the understanding and characterization of spatial soil heavy metal distribution is becoming an im-
portant component of risk assessment and environmental policy. In this work, 213 soil samples collected from
Daye (Hubei Province, China) were used as the empirical dataset. First, maps of soil heavy metal distributions,
including Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn, were obtained using the ordinary Kriging method. Then, the
pollution index (PI) and integrated pollution index (IPI) were calculated based on the ordinary Kriging maps to
obtain a comprehensive quantitative pollution characterization of the eight heavy metals in the Daye soil. The
results showed that 46.1%, 32.1%, and 0.5% of the soil in the study region are moderately, highly and extremely
polluted, respectively. Finally, the one- and two-point stochastic site indicators of IPI were used to assess
quantitatively the uncertainties and risks associated with soil heavy metal distributions in the polluted regions.
These results showed that the IPI values exceeding a specified threshold increased almost linearly with in-
creasing threshold value, whereas the relative area of excess pollution decreased steadily with increasing
threshold. Among the site pairs considered in the study region, about 70% and 26% of them simultaneously
experienced moderate and high pollution risk, respectively.

1. Introduction

Soils located in the interactive zone among the lithosphere, atmo-
sphere hydrosphere and biosphere constitute the main part of the ter-
restrial ecosystem (Coskun et al., 2006). With strong stability and
toxicity, heavy metals in soils can migrate and transfer by means of
natural processes or anthropogenic activities in environmental and
ecological chains on a large scale, threatening the safety of water re-
sources (both surface and subsurface) and food, and even human health
(Chabukdhara and Nema, 2013). At present, soil pollution is a serious
problem in many cities, especially in industrialized and mining regions
(Kodirov and Shukurov, 2009). Accordingly, many studies have focused
on regional soil heavy metals, including pollution assessment, spatial
distribution, and source apportionment (Yang et al., 2016; Xu and
Zhang, 2017; Xiao et al., 2017). In these studies, a number of quanti-
tative indices have been employed to evaluate pollution level in soils
due to single or multiple heavy metal elements. These indices include

the geoaccumulation index (Müller, 1969), the enrichment factor
(Sutherland, 2000), the Nemerow pollution index (Zhong et al., 2010),
the potential ecological risk (Håkanson, 1980), the contamination se-
curity index (Pejman et al., 2015), the pollution index and the in-
tegrated pollution index (Chen et al., 2003). Based on these indices,
heavy metal pollution assessment in urban soils (Sun et al., 2010; Rizo
et al., 2011), road dusts (Zhu et al., 2008), agricultural soils (Cui et al.,
2014; Marrugo-Negrete et al., 2017), industrial or mining area soils
(Machender et al., 2011; Ogunkunle and Fatoba, 2013; Yang et al.,
2016), and soils in other kind of regions (Sheng et al., 2012) have been
studied around the world.

However, in most of the existing studies the values of those indices
are calculated only at the soil sampling points, meaning that the ser-
iousness of soil heavy metal pollution is not assessed at unsampled
areas of considerable size. In such cases, spatial interpolation methods
(e.g., ordinary Kriging) can provide a useful tool to estimate the con-
centrations of soil heavy metals at unsampled sites. However,
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interpolation methods operate in conditions of in situ uncertainty, and,
thus, environmental decisions are also subject to uncertainty
(Christakos, 1985; Christakos and Killam, 1993; Smith et al., 1993).
Therefore, it is necessary to identify risk regions and reduce un-
certainties with some quantitative indicators.

In view of the above considerations, the present work has two main
goals: the first goal is to assess heavy metal contamination in the soils of
the study region (Daye city, Hubei province, China) using the pollution
and integrated pollution indices of eight different heavy metal elements
estimated by spatial interpolation (ordinary Kriging); and the second
goal is to assess quantitatively the pollution risk in the study region
based on one-point and two-points stochastic site indicators.

2. Materials and methods

2.1. Study region and sample collection

The city of Daye (latitude 29°40′—30°15′N, longitude
114°31′—115°20′E) is located in the southeast of Hubei province and
the south bank of the middle reaches of the Yangtze River. It is a famous
mining city in China –its mining and smelting history can be traced
back to 3000 years ago. Now, due to the rich mineral resources, there
are still a larger number of mines (coal, copper, iron, and gold) and
smelting factories inside and outside Daye city. Unlike other industrial
and mining areas, the industrial and mining enterprises in Daye city are
mixed with commercial, residential and agricultural area. Thus, heavy
metals in the soils can have a great impact on the health of the local
population.

In order to assess soil heavy metal pollution, a total of 213 topsoil
samples (0–20 cm depth) were collected in the industrial, mining and
population concentrated areas of Daye city during September 2016
(Fig. 1). The sampling sites were determined randomly, with an average
distance between sites approximately equal to 500m. Following the
pre-processing stage (Yang et al., 2016), the concentrations of each one
of the eight heavy metal elements (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) were

measured using inductively coupled plasma mass spectrometry (ICP-
MS).

2.2. Data analysis and spatial distribution maps

After removing the abnormal values, a standard statistical analysis
was carried out to describe soil heavy metal contents. The Kolmogorov-
Smirnov (K–S) test was used to determine whether the original data of
various heavy metals followed a normal distribution. Data transfor-
mation was applied in the original data if the K–S value was<0.05.
Then, the ordinary Kriging method (OK, Webster and Oliver, 2007) was
used to obtain the spatial distribution of each heavy metal in the soil. In
order to assess the spatial interpolation (OK) accuracy, the standard
sample-based cross-validation technique was implemented. Based on
the leave one out cross validation technique, two accuracy indicators
were computed from the pairs of “estimated-observed” soil heavy metal
concentrations at the sampling points: the Pearson correlation coeffi-
cient (r), and the mean absolute error (MAE). The r and MAE were used
to measure the strength of the linear relation and mean absolute de-
viation between the estimated and the observed soil heavy metal con-
centrations, respectively. For an accurate spatial interpolation, the r
should be close to 1 and the MAE should be as small as possible. In
addition, in order to remove any quantitative difference among the
various heavy metals in soils, an error rate (ER) was defined as the ratio
of the MAE over the mean value of the heavy metals.

2.3. Heavy metals pollution assessment

Based on the spatial distribution of each heavy metal in soils, the
pollution index (PI) and the integrated pollution index (IPI) were used
to assess the pollution impact for each heavy metal separately and the
eight heavy metals as a whole, respectively. The PI was defined as the
ratio
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where C(s) is the concentration of each heavy metal at the spatial lo-
cation s with coordinates s1 and s2, i.e., s=(s1, s2), and B is the corre-
sponding background value. Then, based on the PI results, the pollution
levels for each metal were divided into three classes: PI(s)≤ 1, low
pollution at location s; 1≤ PI(s)≤ 3, moderate pollution at location s;
PI(s)≥ 3, high pollution at location s. The IPI was defined as the mean
value of the PIs of the eight metals considered,
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(in this study N=8). Based on the IPI value, and following the clas-
sification proposed by Wei and Yang (2010), the soils were classified
into four categories: IPI≤ 1 (slightly polluted soil); 1 < IPI≤ 2
(moderately polluted soil); 2 < IPI≤ 5 (highly polluted soil); IPI > 5
(extremely polluted soil).

2.4. Stochastic site indicators

Stochastic site indicators (SSI) describing the pollution state of a
region under conditions of uncertainty were proposed by Christakos
and Hristopulos (1996a, 1996b, 1997). In this work, the goal is to assess
quantitatively the soil heavy metal risks in the polluted region of in-
terest, in which case the SSI of the IPI variation were calculated as
follows.

Let us define IPI(s)= IPI(s1, s2) as the spatial random filed model
(SRF, Christakos, 1992) representing the spatial variation of each IPI
within the domain D. A spatial indicator random field is defined in
terms of IPI(s) asFig. 1. Map of soil sampling sites, roads and elevation.
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