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A B S T R A C T

Conservation programs for imperiled fish require a sampling method for quantifying their habitat relationships
and their progress toward recovery, via abundance estimation and subsequent monitoring. Depletion sampling is
a commonly used method, although the assumptions of homogeneous capture probabilities are tenuous.
Recently, Bayesian hierarchical models have been used to describe the conditional relationships between
abundance of animals and detection probability, but their performance remains untested when detection varies
across successive passes. We tested such approaches within a depletion-sampling framework for estimating
abundance of three endemic and imperiled fish species in southeastern Arizona, USA. Our procedure uses de-
pletion sampling, via simulation and field trials, and removes the untenable assumption of constant detectability
across sampling passes. Specifically, we evaluated how population size, the number of depletion passes, the
probability of fish detection, the amount of decline in this probability across removal passes, and the effects of
variable detection probability affect bias and precision when using models with constant and variable detection
probability. Abundance estimates were negatively biased when detection probability declined by 20% or more
across successive passes, with detection probability< 0.30 on the first pass. When detection probability declined
by<10% across successive passes, unbiased estimates could be attained with detection probabilities of 0.20.
Increasing depletion passes improved precision but not bias. Field trials underscored the importance of in-
corporating changes in detection probability among species and successive depletion passes. Our work de-
monstrates the efficacy of depletion experiments to estimate abundance, and highlights the importance of
sampling a known abundance to accompany simulation analyses. Monitoring programs ignoring variability in
detection probability using a depletion framework can produce biased abundance estimates.

1. Introduction

Conserving endemic and imperiled fish species requires measuring
their recovery status and quantifying species-habitat relationships.
Population abundance and trend data reveal their status, while species-
habitat relationships steer management toward boosting population
growth. Several sampling designs and modeling techniques exist for
acquiring such data for lotic fish, but most ignore detectability
(Schnute, 1983). Because detection probabilities are usually< 1.0,
such procedures may bias abundance estimates and trends, while pro-
ducing inaccurate species-habitat relationships (Nichols, 1986; Stewart
et al., 2017a). We focus on depletion (i.e., removal) sampling, often
used for estimating the abundance of demographically closed animal

populations (Seber, 1982). The method estimates initial abundance,
and is adjusted by a detection rate for each sampling occasion (Dorazio
et al., 2005). Particularly, it remains unknown if this procedure pro-
duces unbiased estimates of abundance unless methods that account for
variable detection probability and overdispersion in animal abundance
across sites are applied.

Historically, examining the effectiveness of depletion sampling re-
lies on observational and experimental methods, with the former re-
ceiving most attention. For example, observational approaches typically
draw comparisons between two survey techniques or different sets of
model parameterizations (e.g., Edwards et al., 2003; Matson et al.,
2018). Others have incorporated empirical analyses of long-term trends
in population abundance, using various generalizations of abundance
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estimators, which form the focal point of the evaluation of the survey
method (e.g., Roa-Ureta et al., 2015; Feenstra et al., 2017). In contrast
to the observation approach toward survey evaluation, experimental
approaches seek to exclude confounding effects using either a con-
trolled or simulated condition (e.g., Hanks et al., 2018), and rely on
manipulating conditions that may directly influence the capture prob-
ability of fish to evaluate the utility of the survey method (e.g., Habera
et al., 2010). Neither approach is self-sufficient; disentangling the as-
sumptions of depletion sampling and how this affects model-based es-
timates is needed to fully explore the utility of depletion sampling to
index abundance of fish populations.

We embark on an experimental approach. Practically, we seek
abundance, their population trends, and producing species-habitat in-
formation to recover three fish: Yaqui chub Gila purpurea, Yaqui top-
minnow Poeciliopsis occidentalis sonoriensis, and Mexican longfin dace
Agosia sp. (USFWS, 1994; Miller et al., 2005). Analytically, we need
assurance that depletion sampling produces accurate estimates.
Therefore, this work centers on understanding and improving the utility
of depletion models to estimate abundance and detection probabilities
for spatially-distinct subpopulations of endangered small-bodied fish.

Depletion models for experimental data are based on four assump-
tions: (1) all animals have the same probability of capture, (2) the
probability of capture does not change from one sample to the next (i.e.,
remains constant), (3) all removals from the population are known, and
(4) the population is closed to any unknown changes (i.e., births,
deaths, or migration) other than the known removals (Raleigh and
Short, 1981; Williams et al., 2002). Adhering to these assumptions –
that detection is constant over successive passes and the same for all
animals and individuals –is risky. Heterogeneity arises from species,
sex, age, size, individual variation, intensity of sampling, or sampling
duration (Farnsworth et al., 2002; Peterson et al., 2004). Heterogeneity
in detection probability must be accounted for if it is too great.

To address heterogeneous detection probabilities, both practical and
statistical considerations have guided novel sampling designs.
Procedures such as maintaining closed populations, reducing survey
duration, using identical collection methods, and standardizing effort
during each removal step, are believed to maintain the sampling as-
sumptions and reduce heterogeneity in detection probability (Raleigh
and Short, 1981). Alternatively, practitioners can use statistical models
incorporating different detection probabilities for each subsequent re-
moval occasion, while borrowing information from other subpopula-
tions by estimating spatially-distinct detection probability and abun-
dance parameter estimates (Dorazio et al., 2005). Previously, biologists
recognizing this issue built models to incorporate declines in detection
probabilities over successive passes (e.g., Schnute, 1983), and we
consider these models. However, the degree that these procedures and
detection models produce unbiased abundance estimates remains un-
tested with actual removal data (Peterson et al., 2004).

We used simulation to test the hypothesis that bias and precision
will be affected by population size, number of passes, and declining
detection probability across passes. This hypothesis allowed us to
evaluate how bias and precision in abundance were affected by

population size (low to high), the number of depletion passes, fish de-
tection, the amount of decline in fish detection across removal passes,
and the effects of variable detection when using constant and variable
detection probability models. We then field tested the assumptions of
these model-based simulations by establishing known population sizes
of fish in their natural environments, and used depletion sampling with
alternative model structures to estimate those known abundances. Since
previous statistical approaches used simplified assumptions to account
for stochastic sources of variation in the abundance parameter among
subpopulations, we present an alternative to account for extra-Poisson
variation (i.e., overdispersion) in simulations and field data. Our pro-
cedure provides the first unbiased abundance estimates for populations
of these fish in lotic environments, establishes methods for monitoring
population status, enables measuring recovery, and identifies species
habitat preferences. We also improve the design of depletion models,
while showing, empirically, the importance of incorporating detection
heterogeneity for avoiding biased results, and identifying specific cir-
cumstances when this sampling method fails.

2. Methods

2.1. The model

We use a hierarchical Bayesian approach for fitting alternative
formulations of depletion models. These models provide a natural way
to incorporate alternative structures, such as latent variables for mod-
eling, data augmentation, and inferences related to shape and scale,
representing the uncertainty in the posterior probability distribution of
the model parameters (Gelman, 2006). In general, hierarchical Baye-
sian models are adaptable to various capture-recapture experiments (in
both marked and unmarked methods), such as depletion models that
estimate abundance from unmarked individuals. The depletion survey
is designed such that animals are captured from I spatially distinct sites
on J different sampling occasions, and populations are demographically
closed to changes in abundance, births, deaths, immigration, or emi-
gration at the time of sampling (Table 1).

We consider the observed elements of the model to consist of the
sequence of counts of unmarked individuals, y, from each sampling
occasion = …j J1, within each set of = …i I1, , sites. Therefore, the
observed data, yij, can be denoted by the matrix of observed numbers of
animals during the survey as = = … = …Y y i I j J{ : 1, 2, , ; 1, }ij and is
regarded as a binomial outcome h y N q( | , )ij ij ij (or multinomial; Dorazio
et al., 2005), as
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The outcome is conditional on the unknown total number of in-
dividuals available for sampling, Nij, within site i, where the infinite
summation is replaced over Ni by the summation of observations across
passes at a site. Depletion surveys require the removal of captured in-
dividuals during occasion j. Under this specification, qij is defined as the

Table 1
Parameters used to define prior distributions for the hierarchical Bayesian depletion models with constant and variable detection models.

Effect Equation Parameter Prior distribution Prior parameters

Simulation analyses

Fixed =log λ α( )i α ∼α N μ σ( , )2 =μ 0 ∼σ Unif (0,10)
Random ∼N λ ε Pois λ ε| , ( )i i i i i εi ∼ ∼ ∼ε Gamma ϕ Unif b c ϕ Unif b c( ( , ), ( , ))i =b 0 =c 100
Random (Constant) ∼y q N Bin q N| , ( , )ij i ij i ij qi ∼q Beta d e( , )i =d 1.1 =e 1.1

Fixed (Variable m1) ∼y q N Bin q N| , ( , )ij ij ij ij ij qij = ∼ +q p Beta d e( , )ij 1

∼ − ∼ × − ∼ −p Beta d e p Beta d e c Beta d e( ( , ) ( , )) (1 ( , ) )j
2 1

1

=d 1.1 =e 1.1

Fixed (Variable m2) ∼y q N Bin q N| , ( , )ij ij ij ij ij qij = ∼ − ∼ −q p Beta d e p Beta d e( , )(1 ( , ))ij
j

1 0
1 =d 1.1 =e 1.1

D.R. Stewart et al. Fisheries Research 209 (2019) 208–217

209



Download English Version:

https://daneshyari.com/en/article/11024922

Download Persian Version:

https://daneshyari.com/article/11024922

Daneshyari.com

https://daneshyari.com/en/article/11024922
https://daneshyari.com/article/11024922
https://daneshyari.com

