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A B S T R A C T

This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. In par-
ticular, we present global maps at 500m resolution of specific leaf area, leaf dry matter content, leaf nitrogen
and phosphorus content per dry mass, and leaf nitrogen/phosphorus ratio. The processing chain exploits ma-
chine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data for gap
filling and up-scaling of in-situ measured leaf traits. The chain first uses random forests regression with surro-
gates to fill gaps in the database (> 45% of missing entries) and maximizes the global representativeness of the
trait dataset. Plant species are then aggregated to Plant Functional Types (PFTs). Next, the spatial abundance of
PFTs at MODIS resolution (500m) is calculated using Landsat data (30 m). Based on these PFT abundances,
representative trait values are calculated for MODIS pixels with nearby trait data. Finally, different regression
algorithms are applied to globally predict trait estimates from these MODIS pixels using remote sensing and
climate data. The methods were compared in terms of precision, robustness and efficiency. The best model
(random forests regression) shows good precision (normalized RMSE≤ 20%) and goodness of fit (averaged
Pearson's correlation R = 0.78) in any considered trait. Along with the estimated global maps of leaf traits, we
provide associated uncertainty estimates derived from the regression models. The process chain is modular, and
can easily accommodate new traits, data streams (traits databases and remote sensing data), and methods. The
machine learning techniques applied allow attribution of information gain to data input and thus provide the
opportunity to understand trait-environment relationships at the plant and ecosystem scales. The new data
products – the gap-filled trait matrix, a global map of PFT abundance per MODIS gridcells and the high-re-
solution global leaf trait maps – are complementary to existing large-scale observations of the land surface and
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we therefore anticipate substantial contributions to advances in quantifying, understanding and prediction of the
Earth system.

1. Introduction

In terrestrial ecosystems, environmental conditions and biogeo-
chemical processes both influence and are influenced by plant com-
munities. Historical processes such as evolution, migration and dis-
turbance shape plants from the organismal to community level (Musavi
et al., 2015). At the organismal level, plant traits, which are measurable
morphological, anatomical, physiological and phenological character-
istics, can influence the establishment, fitness, and survival of in-
dividuals (Westoby, 1998; Reich et al., 2007; Violle et al., 2007;
Homolova et al., 2013). This definition has been recently updated to
encompass also responses and effects attributes at broader scales such
as population, community, and ecosystem (Reich, 2014). These traits
vary widely across the ∼400,000 vascular plant species (http://www.
theplantlist.org//), and due to acclimation and adaptation processes
vary within individual species (Turner et al., 2006; Reich et al., 2007).
Standard modeling and remote sensing approaches to estimate photo-
synthesis, evapotranspiration and biophysical parameters such as the
fraction of absorbed photosynthetically active radiation (fAPAR) and
leaf area index (LAI) use plant functional types (PFTs) to include plant
traits within the model (Chen et al., 1999; Myneni et al., 2002; Zhao
et al., 2005; Krinner et al., 2005; Mu et al., 2011; Jiang and Ryu, 2016).
In so doing however, the diversity of plant communities is simplified
into a relatively few categories and key variability within individual
PFTs is lost (Running et al., 1994; Wullschleger et al., 2014). Subse-
quently, model parameters based on plant trait properties are limited by
the PFT groupings, resulting in an important source of uncertainty in
many biosphere models (van Bodegom et al., 2014; Reich, 2014;
Reichstein et al., 2014).

In Earth system modeling, methods are being developed to improve
PFT approaches, such as refining PFT categories and/or making the
PFTs more spatiotemporally dynamic (Poulter et al., 2011). An alter-
native approach is to model the continuous spatial variability of plant
traits themselves (Yang et al., 2015; Musavi et al., 2016; van Bodegom
et al., 2014; Díaz et al., 2016; Madani et al., 2014). This can be done
with the use of plant trait databases through establishing empirical
trait-environment relationships and trait covariation (Wullschleger
et al., 2014; Verheijen et al., 2015). There are a number of global traits
databases containing in-situ trait observations of a comprehensive suite
of plant traits for numerous species around the globe (Kattge et al.,
2011; Reichstein et al., 2014; Díaz et al., 2016). These extensive data-
bases are continually evolving and growing and provide the foundation
for making broader and spatially explicit inferences of plant traits.
Spatializing plant traits however, is not without substantial challenges.
First, despite the large number of species included in trait databases,
they are sparse compared to the overall richness and diversity of species
globally (Jetz et al., 2016). Second, the large trait databases are
amalgamations of many individual datasets, and contain numerous
gaps. Third, the in-situ trait observations are temporally disjointed,
meaning they come from a wide range of years depending on when
measurements were made. Finally, these observations are made at the
individual plant scale, and not necessarily representative of the varia-
bility at coarser scales.

Attempts to spatialize plant traits fall into two general categories:
biogeographical and remote sensing based approaches. Biogeographical
approaches attempt to extrapolate local trait measurements across
different spatial scales by relating traits to abiotic factors, assuming that
these factors (i.e., climate and soils) constrain the structure and func-
tion of natural ecosystems (Niinemets, 2001; Kattge et al., 2011;
Reichstein et al., 2014; Díaz et al., 2016; Madani et al., 2018). For

example, van Bodegom et al. (2014) generated global trait maps by
relating traits to gridded soil and climate data. Using only these en-
vironmental drivers, they were able to explain up to 50% of the global
variation of plant traits. These approaches, however, do not take into
account actual measured vegetation dynamics and are limited by the
coarser resolution of the input data. Remote sensing approaches, on the
other hand, can capitalize on higher resolution observations of actual
vegetation dynamics. The estimation of plant traits from optical remote
sensing is often done through physical radiative transfer models (RTMs)
or empirical approaches (Haboudane et al., 2004; Mulla, 2013). RTMs
attempt to explicitly define the complex interactions between the ra-
diation and the vegetation canopy properties, these models could be
inverted to retrieve biophysical variables from leaf/canopy reflectances
(Jacquemoud and Baret, 1990; Dawson et al., 1998; Jacquemoud et al.,
2000; Houborg et al., 2007; Stuckens et al., 2009). The combined use of
RTMs with satellite data from airborne and satellite-based platforms
(Liang, 2005; Baret and Buis, 2008; Berger et al., 2018) has allowed the
successful retrieval of vegetation traits at different spatial and temporal
scales (e.g. chlorophyll content, (Houborg et al., 2007; Zhang et al.,
2005), water content, (Houborg et al., 2007; Zarco-Tejada et al., 2003),
and others like leaf dry matter content and specific leaf area, (Ali et al.,
2016; Feret et al., 2008)). However, applying RTMs across broad spa-
tiotemporal extents is challenging as parameterizing RTMs across a
wide range of growth forms, biomes and ecosystems is challenging
(Berger et al., 2018). Furthermore, RTMs are generally based on single
scene reflectance values and do not consider climatic variables that are
valuable proxies for various plant traits. Alternatively, empirical ap-
proaches relating in-situ observations of plant traits to remote sensing
data have been successful at mapping localized gradients of plant traits.
These approaches have limited broader applications as in-situ data are
often scarce or incomplete. Recent studies have combined remote sen-
sing and biogeographical approaches (Butler et al., 2017) to obtain
global maps of leaf traits at a very low spatial resolution (0.5°× 0.5°
grid). The main limitation of these approaches is that, until now, they
have utilized static remote sensing PFT maps for the spatialization of
traits, being restricted to the simplicity of the PFTs, and not fully ex-
ploiting the full potential of optical remote sensing data (spatial and
temporal variability of spectral responses), responses that can be in-
valuable in the estimation of key plant traits.

In this manuscript, we present and validate a combined remote
sensing and biogeographic approach to spatializing estimates of key
leaf traits. We integrate plant traits databases, remotely sensed data,
and climatological data resulting in spatialized global maps of leaf traits
at an unprecedented spatial resolution (500m), that can be in-
corporated into other Earth system's models. We capitalize on the ex-
tensiveness of traits databases, the growing archive of satellite remote
sensing data at multiple resolutions through time, global climatological
data, and the advent of high-performance cloud computing technolo-
gies specifically designed for remote sensing applications (e.g. Google
Earth Engine), combined with machine learning models for gap filling,
classification and spatializing. We develop these methods for a selected
set of 5 key leaf traits: Specific Leaf Area (SLA; ratio of leaf area per unit
dry mass), Leaf Dry Matter Content (LDMC), Leaf Nitrogen Content per
leaf dry mass (Leaf Nitrogen Concentration, LNC), Leaf Phosphorus
Content per leaf dry mass (Leaf Phosphorus Concentration, LPC), and
Leaf Nitrogen to Phosphorus ratio (LNPR). SLA is a key trait of the leaf
economics spectrum reflecting the trade-off between leaf longevity and
carbon gain (Wright et al., 2004; Díaz et al., 2016). SLA is thus in-
dicative for different plant life strategies with respect to fast versus slow
return of carbon investments (Reich, 2014). Some authors have
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