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ARTICLE INFO ABSTRACT

This study aimed to improve the potential of Analytical Spectral Devices (ASD) hyperspectral and Landsat
Operational Land Imager (OLI) data in predicting soil organic matter content (SOMC) in the bare topsoil of the
Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. The results indicated that the
correlation of coefficients (R) between SOMCs and hyperspectral data processed by fractional derivative were
significant at the 0.01 level; the number of wave bands increased initially and then decreased when the order
increased. The correlation of coefficient peak appeared at the 1.2 order with a value of 0.52. The correlation of
coefficients (R) between SOMCs and the optimal remote sensing indexes (the ratio index, RI; difference index, DI;
and the normalized difference index, NDI) of peaked at the 1.2 order, with correlation of coefficients (R) values
of 0.81, 0.86 and 0.82, respectively. Six SOMC estimation models were created by means of a single band and
optimal remote sensing indexes using Gray Relational Analysis-BP Neural Network (GRA-BPNN). This study
found that the optimal model was a 1.2 order derivative model, where the lowest root mean square error (RMSE)
was 3.26 g/kg, the highest was 0.92, and the residual prediction deviation (RPD) was 2.26. To complete the high
accuracy retrieval of SOMCs, based on Landsat OLI operational land images data, more ‘hidden’ information
from the Landsat OLI images were obtained by employing the subsection of spectral band method and the
fractional derivative algorithm. Accuracy of the SOMC map was attained by the optimal model of the ground
hyperspectral data and the Landsat OLI data, which had low RMSE values of 4.21 g/kg and 4.16 g/kg, respec-
tively. Therefore, we conclude that the SOMC can be estimated and retrieved using a fractional derivative
algorithm, the subsection of spectral band method, and the optimal remote sensing index.
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destructive and spatially limited; therefore, it is not suitable for efficient
monitoring of SOMC.

1. Introduction

Soil organic matter content (SOMC) is a critical property in soil
nutrients. It supports plant growth (Seely et al., 2010; Six and Paustian,
2014; Castaldi et al., 2016; Jin et al., 2016) and plays an important role
in soil formation, soil fertility, environmental protection, and the sus-
tainable development of agriculture and forestry (Nocita et al., 2015).
Therefore, SOMC is an effective evaluation index for soil fertility.
Conventional SOMC estimation has relied solely on ground samples and
laboratory analyses. This method is highly accurate, but is slow, costly,

Recently, remote sensing methods have been applied to estimate
SOMC as visible and near infrared reflectance (Vis-NIR) spectroscopy is
a physical non-destructive, rapid, reproducible method that provides
inexpensive prediction of soil physical, chemical and biological prop-
erties (Ben-Dor and Banin, 1995; Ben-Dor et al., 2002). Reflectance
signals are produced by vibrations in bonds between C, N, H, O, P, and S
atoms. Weak overtones and combinations of fundamental vibrations
due to the stretching and bending of NH, OH and CH groups dominate
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the NIR (700-2500nm) and electronic transitions the visible
(400-700 nm) portions of the electromagnetic (EM) spectrum (Ben-Dor
et al., 1999). Remote sensing technology plays a key role in global and
regional SOMC monitoring. Many scholars (e.g., Chang and Laird,
2002; Bartholomeus et al., 2008; Barthés et al., 2006; Viscarra Rossel
et al., 2010; Cécillon et al., 2009; Franceschini et al., 2015;Vaudour
et al., 2016) have reported the benefits of the visible and mid-infrared
spectrum for the shorter cycle and lower cost in estimation of SOMC
compared to conventional SOMC analyses, which could enable sig-
nificant reductions or hyperspectral remote sensing alternatives that
could complement traditional methods for monitoring SOMC (Luce
et al., 2014; Stenborg and Dematté, 2015; Jin et al., 2015; Eisele et al.,
2015). Other studies used multispectral remote sensing data, including
IKONOS, SPOT, Hyperion hyperspectral data, Landsat TM and LiDAR
data aiming at improving the accuracy of predicting the parameters of
land surfaces at the regional scale (Castaldi et al., 2016; Vaudour et al.,
2016; Peodn et al., 2017; Rasel, 2017). Although with the development
of spaceborne, airborne multispectral and hyperspectral technologies,
remote sensing data have been gradually applied to the estimation of
SOMC (Gomez et al., 2008; Jing et al., 2010). These studies only used
spectral data from the remote sensing data. However, the estimation of
SOMC is to be realized by establishing the relationship between original
data and SOMC. In processing, remote sensing data are affected by
many environmental factors, such as noise that occur in the raw data.
Previous studies using atmospheric correction method in data proces-
sing reduced the noise in the process of atmospheric transmission, but
ignored other noises. Hence, it is required to explore new ways to
minimum noise data and to improve the accuracy in SOMC estimation.

The derivative spectrum is a powerful remote sensing processing
tool that extracts more sensitive spectral information than raw data
(Wiggins et al., 2007). The first derivative (FD) and the second deri-
vative (SD) are methods of mathematical change. The first derivative
(FD) represents the slope of the spectral curve, and the second deriva-
tive (SD) represents the curvature of the spectral curve (Holden and
LeDrew, 2008; Pu et al., 2008; Wang et al., 2018). Derivative techni-
ques of remote sensing data have been widely applied to reduce noise,
decrease the baseline effects, solve overlapping problems, sharpen the
spectral features, capture subtle details of spectral curves, and improve
the extracted accuracy of land surface parameters (Stavroulakis et al.,
2013; Tsai and Philpot, 2002). Numerous studies using hyperspectral
remote sensing concentrated on the untreated spectral or integer deri-
vatives methods (i.e., FD and SD) of remote sensing data, but ignored
fractional derivative methods.

However, FD and SD have some disadvantages. Many studies have
shown that the spectroscopy processing methods of FD and SD have led
to spectral information loss or noise amplification (Kharintsev and
Salakhov, 2015). Therefore, fractional derivatives complement the FD
and SD methods and provide a new solution in processing remote
sensing data. Fractional derivatives are similar to integer ordering, but
the order is arbitrarily extended (Li et al., 2015). There are some cases
in the processing of remote sensing data where fractional derivatives
were used. Schmitt (1998) introduced the fractional derivative method
in the analysis of diffuse-reflectance spectra. J.Z. Wang et al. (2016)
estimated desert soil organic carbon content based on hyperspectral
data that was preprocessed with a fractional derivative.

We selected the Ebinur Lake Wetland National Nature Reserve
(ELWNNR) in Xinjiang, China, near the Kazakhstan border (Fig. 1a) as
the study area. The purposes of this study are (1) extracting more
‘hidden’ information from remote sensing data using a subsection of
spectral band method and a fractional derivative algorithm, (2) ana-
lyzing the relationship between remote sensing data processed by a
fractional order derivative and SOMC, (3) building and discussing the
variation tendencies of some parameters in the GRA-BPNN models, and
(4) retrieving SOMC based on optimal GRA-BPNN models in the
ELWNNR.
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2. Materials and methods
2.1. Study area

The ELWNNR is located in the northwest of Xinjiang Uygur
Autonomous Province at 44°54'-45°08’N and 82°35’-83°10’E (Fig. 1).
Ebinur Lake, the largest saltwater lake in Xinjiang, is in the geologic
structural basin formed from the faults, created by the Himalayan Or-
ogeny, when India merged with Asia that began 45 million years ago.
The soil types in the study area are mainly desert soil made up of
piedmont psephitic, salt and gypsum. Overall, the study area contains
vast areas of dry lake beds abundant in salt-rich loose sediments. The
total coverage of the ELWNNR is 2670.8 km?. ELWNNR contains a
variety of land types, such as water body, vegetation, wetland, desert,
salinized land, and others (i.e., Gobi and mountains) in terms of land
use and land cover. The climate in The ELWNNR is a continental arid,
with hot summers, cold winters, rare precipitation, and intense eva-
poration. All these events lead to dust storms in winter. Vegetation is
scarce and the ecological environment deteriorates substantially.
Therefore, the increase in vegetation coverage is one of the important
projects for ecological restoration in the ELWNNR (Zhang et al., 2015;
Yu et al., 2017; Wang et al., 2017).

2.2. Data collection

2.2.1. Soil sample collection

Five topsoil samples at 0-20 cm (30 X 30 m square in Fig. 1e) to
represent each of the 45 soil sites were collected in in the field from
May 17th to May 25th and again from August 7th to August 15th, 2016
(see sample location map in Fig. 1c). The sample sites were selected
according to the soil types and surface heterogeneity, including con-
sideration for the diversity of soil surface characteristics. The samples
were collected in several trips using interval sampling method such as
shoveling and tape measure. The main designed route of experimental
sampling point was along the lake, with 5km intervals in between.
Open and flat areas were selected as sample sites. A portable global
positioning system (GPS, G350, UniStrong, China) unit was employed
to provide location and time information of each sample collected. Each
soil sample (approximately 2kg) was put into a plastic bag, labeled,
sealed, and transported to the laboratory. They then were naturally air-
dried and sieved through a 2-mm sieve to remove stones, weed roots,
and other impurities (O'Kelly, 2004). Soil organic carbon content
(SOCC) was measured using the K>Cr,0,-H,SO, oxidation method. A
conversion factor of 1.724 is commonly used to convert SOCC to SOMC:
SOMC (%) = SOCC (%) x 1.724 (Jin et al., 2016).

2.2.2. Spectral measurements

A USA Analytical Spectral Devices (ASD) FieldSpec® 3 Portable
Spectrometer (Analytical Spectral Devices, Boulder, CO, USA), spectral
ranging 350-2500 nm with 2151 output bands, was used to collect the
hyperspectral readings of soil in a dark laboratory. Two 90 W tungsten
halogen bulbs were used as light sources. On the opposite sides of the
soil sample a zenith angle was set at 30°. Soil samples were placed in a
container with a diameter of 10 cm and a depth of 1.5 cm, and were
flattened at the surface. The probe field of view was set at 15°, and the
distance from the ground was set as approximately 6 cm. A standar-
dized white panel was employed to calibrate reflectance spectra of the
soil. Ten spectra for each soil sample were collected, and the actual
reflectance spectra of the soil samples were obtained by using the
ViewSpec Pro (Analytical Spectral Devices, Boulder, CO, USA. Version
2.14).

2.2.3. Landsat OLI data acquisition and preprocessing

Cloud-free Landsat OLIs (operational land images) were used in this
study. Landsat OLI data were obtained from the USGS (http://glovis.
usgs.gov/) close to the date when the soil samples were collected (May
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