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A B S T R A C T

The study presents a new method nowcasting precipitation called the Ensemble Tree Method (ETM), which gives probability forecast of accumulated precipitation
based on the extrapolation of radar reflectivity. ETM combines a tree model with a Bootstrap technique. It forecasts the probability that the hourly accumulated
precipitation exceeds a given threshold for cells of 3 by 3 km size.

ETM was tested using radar reflectivity data from July 2012 in a domain of 489 km by 291 km covering the Czech Republic (Central Europe). While forecasting,
we considered a lead time of up to 180min having a time step of 30min and four precipitation thresholds (0.1, 1.0, 5.0, and 10.0mm). ETM provided us forecasts of
the probability of exceeding an hourly precipitation threshold from 0 to 60min, 30 to 90min, …, and 120 to 180min. The performance of ETM was assessed using a
skill score derived from the mean-square-error, and was compared with the performance of forecasts based on a logistic regression that was used as reference forecast.
We demonstrated that the prediction of ETM is better than that of the reference forecast. The main advantage of ETM is that the ETM reflects the uncertainty of
forecast better as compared to the overconfident reference forecasts, which is particularly true for the higher precipitation thresholds. Thus, despite low predicted
probabilities, the forecasts given by ETM seem more realistic.

1. Introduction

Frequently used techniques for rainfall nowcasting consist in the
extrapolation along Lagrangian trajectories of the measured radar re-
flectivity due to its low computational costs and easy implementation.
Diverse extrapolation methods have been developed that differ in the
calculation of motion fields and the application of extrapolation. The
majority of the extrapolation methods is designed for a deterministic
forecast (e.g. Germann and Zawadzki, 2002; Novák, 2007; Reyniers,
2008; Haiden et al., 2011; Sokol and Pesice, 2012; Sokol and Zacharov,
2012; Foresti et al., 2015; Bližňák et al., 2017). Nevertheless, several
extrapolation methods have also been developed for a probabilistic
forecast (e.g. Kitzmiller, 1996; Bowler et al., 2007; Berenguer et al.,
2011; Atencia and Zawadzki, 2014; Atencia and Zawadzki, 2015; Sokol
et al., 2017). The major advantage of a probabilistic forecast is that it
enables to express the uncertainty of a forecast explicitly. The un-
certainty of forecasts has two main reasons: (i) inaccurate calculation of
Lagrangian trajectories and (ii) non-explicit modelling of the rainfall
growth and decay. The uncertainties of forecasts are usually modelled
using simple statistical models.

Often, the probabilistic extrapolation methods that forecast pre-
cipitation extrapolate the radar reflectivity data. Likely, the simplest
probabilistic extrapolation method is the method that considers the
forecasted values in the neighbourhood of a given point as possible

forecasts; the possible forecasts then give an ensemble forecast (Schmid
et al., 2000; Germann and Zawadzki, 2004; Theis et al., 2005).
Kitzmiller (1996) developed a probabilistic precipitation forecast based
on the Model Output Statistic approach (MOS; e.g. Sokol, 2003). MOS
was used to statistically derive the regression equations that combine
the rainfall probability with initial-time predictors (calculated from
radar reflectivity data and selected NWP model variables), forecasted
remote-sensor fields, and NWP model fields (Kitzmiller, 1996; Sokol
and Pesice, 2012). Currently, the probabilistic forecasting methods al-
most exclusively proceed from ensemble predictions, tough they differ
in a manner how the ensembles are formed. For instance, stochastic
algorithms enable to simulate the stochastic perturbation and re-
produce the spatial and temporal structure of precipitation fields
(Bowler et al., 2007; Atencia and Zawadzki, 2014). Among other sta-
tistical methods, one can cite the String of Beads Model (SBM; Pegram
and Clothier, 2001), which was used by Berenguer et al. (2011) in the
ensemble nowcasting technique called SBMcast (String of Beads Model
cast). The SBMcast enables one to generate the ensemble members of
the rainfall forecast. Sokol et al. (2017) presented a different approach
to form the ensembles. They calculated the probabilistic forecast in two
steps: (i) they generated an ensemble of Lagrangian trajectories by
using a covariance structure of the advection errors that were derived
from historical data, and (ii) they estimated the error due to the neglect
of both the growth and the decay of precipitation by dissociating the

https://doi.org/10.1016/j.atmosres.2018.09.019
Received 26 July 2018; Received in revised form 19 September 2018; Accepted 19 September 2018

⁎ Corresponding author.
E-mail address: sokol@ufa.cas.cz (Z. Sokol).

Atmospheric Research 216 (2019) 1–10

Available online 21 September 2018
0169-8095/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/01698095
https://www.elsevier.com/locate/atmosres
https://doi.org/10.1016/j.atmosres.2018.09.019
https://doi.org/10.1016/j.atmosres.2018.09.019
mailto:sokol@ufa.cas.cz
https://doi.org/10.1016/j.atmosres.2018.09.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosres.2018.09.019&domain=pdf


Brier Score using the historical data. Several authors also applied the
analogue-based approach, which consists in seeking the analogues
(ensemble members), i.e. similar weather states to the current state, in
the historical dataset (Panziera et al., 2011; Foresti et al., 2015; Atencia
and Zawadzki, 2015). Studies based on analogues differ in the way how
the analogues are defined because the main difficulty of the analogue-
based approach is in searching for the suitable analogues. On the other
hand, Atencia and Zawadzki (2015) concluded that any analogue-based
probabilistic forecast has a better forecasting skill than the stochastic
Lagrangian ensemble approach.

In this study, we present a new probabilistic extrapolation method
for precipitation nowcasting that we call Ensemble Tree Method (ETM).
ETM is based on the extrapolation of measured radar reflectivity data
and an ensemble approach. A decision tree method is used to generate
the ensemble members. In contrast to the majority of above-mentioned
methods focused on probabilistic forecasting of precipitation, the pre-
sented ETM aims at a probabilistic forecasting of accumulated pre-
cipitation. The main reason for the probabilistic forecasting of the ac-
cumulated precipitation (instead of “simple” precipitation) is that we
assume that for a given lead time the accumulated precipitation fore-
cast is generally more successful as compared to [simple] precipitation
forecast due to large spatial and temporal variability of precipitation,
especially in summer. Moreover, even the users usually require the
accumulated precipitation forecast instead of [simple] precipitation
forecast.

After this introductory Section 1, Section 2 describes the used radar
reflectivity data and the verification area situated in Central Europe.
Section 3 provides an insight into the ETM, i.e. presented method/
model for the probabilistic forecasting of accumulated precipitation.
Section 4 describes the verification methods of ETM, whereas Section 5
discusses the results of the verification and provides a comparison of
ETM with a model based on logistic regression. Several examples of
precipitation forecasts by ETM are also given in Section 5. Section 6
summarizes the major findings of the new method/model for the
probabilistic nowcasting of accumulated precipitation.

2. Radar reflectivity data and the verification area

In the study, we used radar reflectivity measurements from two
Czech C-band radars (Novák, 2007) from May to September during
2009—2012. The two C-band radars are operated by the Czech Hy-
drometeorological Institute (CHMI). The radar reflectivity is measured
in the two radar domains with a diameter of 256 km each (Fig. 1).

Two standard operational products of the CHMI are used:

(i) Radar reflectivity interpolated to a level of 2 km above sea level
(CAPPI 2 km; Constant Altitude Plan Position Indicator),

(ii) Maximum reflectivity measured in the vertical column for each
radar pixel (MAX3D).

Radar composites of both the CAPPI 2 km and the MAX3D are cal-
culated using the maximum values of the two radars in the area where
the two radars overlap. The resulting radar composites cover a domain
of 728 km by 528 km (Fig. 1) and contain the data with a horizontal
resolution of 1 km and a temporal resolution of 10min.

The operational procedures of the CHMI also include a data quality
control, which consists of ground clutter removal with a Doppler filter
and the reduction of anomalous propagation artefacts (Novák et al.,
2009). It also comprises the removal of artificial echoes such as WIFI
interference in the field structures of reflectivity (Žejdlík and Novák,
2010). The radars are located in the highest parts of highlands, thus the
blockage of radar echoes by terrain is insignificant in the radar domain
and does not contaminate the quality of data.

Precipitation is derived from the radar measurements by a standard
formula, which is operationally used in the CHMI:

=Z R200 1.6 (1)

where R is the rain rate in mm/h and Z is the reflectivity in mm6/mm3.
Precipitation is calculated using CAPPI 2 km.

Although we are aware that the radar derived precipitation is less
accurate than the precipitation obtained by merging of the radar data
with rain gauge measurements, we use radar data only since the CHMI
does not use the merged data for precipitation nowcasting and we aim
at precipitation nowcasting and its verification. Moreover, there are
two main reasons for using the radar data only. First reason is that the
rain gauge measurements are available later than the radar data in the
CHMI, therefore the use of rain gauge measurements would slow down
the operational forecast, which is inconvenient for nowcasting and thus
for our study. Second reason is that including rain gauge measurements
in only the verification of the extrapolation forecasting method might
significantly affect the results. Thus in our study, both the forecast and
the verification are based on radar reflectivity data only. Resulting
forecasts are evaluated in a verification area (489 km by 291 km),
which covers the Czech Republic (Fig. 1).

The radar reflectivity data are averaged into an area covering 3×3
pixels (i.e. 3× 3 km) because our experience showed that a horizontal
resolution of 1 km is too high to obtain satisfactory results for con-
vective precipitation forecasts. Moreover, as desired in this study, the
averaging to a lower horizontal resolution (3×3 km) leads to a sup-
pression of individual local extremes that are usually incorrect, and it
smooths the precipitation field. Sokol et al. (2017) provided a detailed
description of the reasons for averaging of the radar reflectivity data.

3. Ensemble Tree Method (ETM) for forecasting the accumulated
precipitation

Ensemble Tree Method (ETM), which we propose, forecasts the
probability that the precipitation accumulated from a time T0+ T to
the time T0+ T+1h exceeds a given precipitation threshold Tr in cells
covering 3 km by 3 km (i.e. 3 by 3 pixels) in the verification area
(Fig. 1). T0 is the time of the last known radar reflectivity measurement
(i.e. beginning of a forecast) and T represents the lead time. We con-
sidered T varying from 0 to 2 h with a time step of 30min, and fol-
lowing precipitation thresholds Tr=0.1, 1, 5, 10, 15, and 20mm. We
calculated the accumulated precipitation using the trapezoidal rule on
radar derived precipitation with a time step of 10min.

The ETM for forecasting the accumulated precipitation comprises of
two steps: (i) computation of two predictors (predictor Ras and SV;
Section 3.1), and (ii) run of a probabilistic forecasting model using the
calculated predictors (Section 3.2).

3.1. Computation of two predictors

First, we calculate motion fields from a time T0 and the time
T0–10min using MAX3D data (Section 2) and an algorithm similar to
COTREC, i.e. the Continuity of TREC (Tracking Radar Echo by Corre-
lation) vectors (e.g., Novák et al., 2009), that has been detailed by Sokol
et al. (2017). Instead of CAPPI 2 km, which we use to derive immediate
rain rates (Eq. 1), we use MAX3D data at full horizontal resolution (i.e.
1 km) to derive the motion fields, because the MAX3D data have a more
pronounced structure as compared to that of CAPPI 2 km, which is
suitable for the algorithm of Sokol et al. (2017).

Subsequently, we accumulate precipitation from T0–60min to T0
and we extrapolate it over a lead time T. The precipitation is accumu-
lated and extrapolated based on the backward-in-time Lagrangian tra-
jectories (e.g., Germann and Zawadzki, 2002). This way, we computed
the extrapolated hourly precipitation Ra for the whole dataset covering
the warm period (May—September) during 2009—2012.

3.1.1. Predictor Ras

In the next step, we smooth the Ra to obtain the value of a predictor
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